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ABSTRACT
Bandit algorithms, named after casino slot machines some-
times known as “one-armed bandits”, fall into a broad cate-
gory of stochastic scheduling problems. In the setting with
multiple arms, each arm generates a reward with a given
probability. The gambler’s aim is to find the arm producing
the highest payoff and then continue playing in order to
accumulate the maximum reward possible. However, having
only a limited number of plays, the gambler is faced with a
dilemma: should he play the arm currently known to produce
the highest reward or should he keep on trying other arms
in the hope of finding a better paying one? This problem
formulation is easily applicable to many real-life scenarios,
hence in recent years there has been an increased interest
in developing bandit algorithms for a range of applications.
In information retrieval and recommender systems, bandit
algorithms, which are simple to implement and do not re-
quire any training data, have been particularly popular in
online personalization, online ranker evaluation and search
engine optimization. This survey provides a brief overview of
bandit algorithms designed to tackle specific issues in infor-
mation retrieval and recommendation and, where applicable,
it describes how they were applied in practice.

Dorota Głowacka (2019), “Bandit Algorithms in Information Retrieval”, Founda-
tions and TrendsR© in Information Retrieval: Vol. 13, No. 4, pp 299–424. DOI:
10.1561/1500000067.



1
Introduction

Over the last decade there has been an increased interest in application
of bandit algorithms in information retrieval (IR) and recommender
systems. The aim of this survey is to provide an overview of bandit
algorithms inspired by various aspects of IR, such as click models,
online ranker evaluation, personalization or the cold-start problem.
Each section of the survey focuses on a specific IR problem and aims to
explain how it was addressed with various bandit approaches. Within
each section, all the algorithms are presented in chronological order. The
goal is to show how specific concepts related to bandit algorithms, e.g.
graph clustering with bandits, or a specific family of bandit algorithms,
e.g. dueling bandits developed over time. Gathering all this information
in one place allows us to explain the impact of IR on the development
of new bandit algorithms as well as the impact of bandit algorithms
on the development of new methods in IR. The survey covers papers
published up to the end of 2017.

Why Bandits?

Bandit algorithms derive their name from casino slot machines, some-
times referred to as one-armed bandits. In this scenario, a gambler is
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faced with a row of such machines. The gambler has to make a number
of decisions, such as which machines to play or how many times to play
each machine. The problem is that each machine provides a random
reward from a probability distribution specific to that machine. The
gambler aims to maximize the sum of the rewards by playing different
machines. Thus, the gambler needs to make a trade-off between exploit-
ing the machine with the highest expected payoff so far and exploring
other machines to get more information about their expected payoffs.

In the 1950’s Herbert Robbins realized the importance of the problem
and constructed convergent population selection strategies for sequential
design of experiments (Robbins, 1985). A couple of decades later John
Gittens constructed a theorem, called the Gittins index, that gave an
optimal policy for maximizing the expected discounted reward (Gittins,
1979). Later on, some approximate solutions based on epsilon strategies
(Sutton and Barto, 1998) as well as Bayesian methods, such as Thompson
sampling (Thompson, 1933), were developed to solve the bandit problem.
The last two decades has seen an immense interest in the study of bandit
algorithms, starting with the development of Upper Confidence Bound
(UCB) (Agrawal, 1995) strategies. In UCB algorithms, however, every
bandit arm is independent and does not pass any information about
its payoff generating distribution to other bandit arms. This led to the
development of linear and contextual bandits (Auer, 2002; Li et al.,
2010b), where a linear dependency between the expected payoff of an
arm and its context is assumed. In comparison to independent bandit
strategies, linear bandits can lead to elimination of arms with low payoff
earlier during the exploration phase thus allowing the player to focus
on trying arms with a potentially higher payoff.

There are a number of reasons why bandit algorithms have gained a
high level of popularity in many applications. They are quick and easy
to implement, they do not require any training data, and they allow
for continuous testing/learning, which makes them highly applicable to
any online application with a continuous stream of data. Thus, over the
years bandits have been applied in many areas: clinical trials (Villar
et al., 2015; Williamson et al., 2017), adaptive routing (Awerbuch and
Kleinberg, 2008), auctions (Nazerzadeh et al., 2016), financial portfolio
design (Shen et al., 2015), cognitive modelling (Głowacka et al., 2009),
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games (Kocsis and Szepesvári, 2006), and, as this survey shows, in
information retrieval.

Organization of the Survey

The survey is organized as follows. Chapter 2 introduces bandit algo-
rithms and gives a brief overview of four broad classes of bandit algo-
rithms: epsilon strategies, independent arms bandits based on upper
confidence bound, linear bandits with dependent arms, and Thompson
sampling. These broad categories of bandit strategies form the basis of
more specialized algorithms discussed in the remaining chapters. Other
types of bandit algorithms with specific applications are introduced in
relevant chapters rather than being briefly introduced in Chapter 2.
Chapter 3 summarizes bandit algorithms inspired by three click models:
the Cascade Model (Section 3.1), the Dependent Click Model (Section
3.2) and the Position Based Model 3.3. The following two chapters
discuss bandit based approaches to ranking (Chapter 4) and ranker
evaluation (Chapter 5). Of particular interest to the reader might be
Section 4.1, where the first bandit algorithms applied to ranking are
described. Chapter 5 focuses mostly on dueling bandits algorithms and
their application to ranking. In Chapter 6, various bandit approaches
used in recommender systems are described. The chapter talks about
personalization (Section 6.1), social network based bandits (Section 6.2),
collaborative filtering with bandits (Section 6.3), optimization through
feature learning (Section 6.4) and multiple arms evaluation (Section
6.6). Section 6.1.1 talks in more detail about contextual bandits in the
context of advertising and recommender systems by introducing some
of the classic algorithms in this area, such as LinUCB (Li et al., 2010a).
Finally, Chapter 7 briefly touches on other areas of information retrieval
where bandits are gradually introduced, such as short text recommen-
dation (Section 7.1), multimedia retrieval (Section 7.2), and web-page
layout optimization (Section 7.3). The appendices contain explanations
of the abbreviations and mathematical symbols used throughout the
survey.
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Who is this Survey Intended for?

The survey is primarily intended for two groups of readers: (1) IR
researchers interested in bandit algorithms or more broadly in reinforce-
ment learning, and who would like to know how and where bandits
algorithms have been applied in IR; (2) machine learning researchers gen-
erally interested in practical applications of machine learning techniques
and challenges posed by such practical applications; (3) data scientists
interested in algorithmic solutions to issues regularly encountered in
information retrieval and recommender systems.

The survey provides a general overview of the bandits methods
discussed and as such it should be accessible to anyone who com-
pleted introductory to intermediate level courses in machine learning
and/or statistics. The reader is advised to consult specific papers refer-
enced throughout the text to learn more about theoretical analysis or
implementation details of specific algorithms. All the chapters are self-
contained and can be read in isolation, although references to related
concepts in other sections are provided throughout the survey. Each
section provides a chronological development of a specific approach or
family of algorithms, where most of the later developments build upon
or improve earlier findings. Chapter 2 is primarily aimed at readers
with little knowledge of reinforcement learning and bandits. Readers
not familiar with these topics are encouraged to start with this chapter
before proceeding to the rest of the survey.



2
Reinforcement Learning and Bandit Algorithms

This chapter provides a brief introduction to reinforcement learning
and introduces the main types of bandit algorithms relevant to IR
applications.

2.1 Reinforcement Learning

Reinforcement learning (Sutton and Barto, 1998) is about learning from
the interaction with the environment how to map situations to actions
in order to maximize a reward. Unlike, e.g. supervised learning where
training examples are provided, in reinforcement learning, the learner
is not given any instructions or examples, but instead must discover,
usually through trial and error, which actions yield the most reward.
In this sense, reinforcement learning aims to mimic learning processes
in biological or cognitive sense. For example, a baby or a toddler (the
learner) might discover that his/her volume or frequency of crying (the
actions) is correlated with how fast he/she can attract attention (the
reward) from his/her carers (the environment). Thus, over time through
trial and error the baby can learn that the higher the frequency of
his/her crying, the faster the response of the carers, where the response
of the carers is the reward and the speed of the response is the value
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of the reward – the faster the response, the higher the reward. These
basic concepts of reinforcement learning can be easily translated into
learning in interactive systems. For example, a recommender system (the
learner) makes product suggestions to the end user (the environment)
and obtains rewards from the user in the form of clicks or purchases.
The more items are clicked or purchased, the higher the reward.

A characteristic specific only to reinforcement learning is the trade-
off between exploration and exploitation. To accumulate a high reward,
the learner must select actions that, when tried in the past, produced
high rewards. However, in order to find actions that give high rewards,
the learner has to try actions that it has not selected before. Thus, the
agent has to exploit its current knowledge of actions that it has already
experienced in order to obtain reward, but it also has to explore new
actions in order to possibly improve the reward in the future. On a
stochastic task, each action must be tried many times to gain a reliable
estimate of its expected reward. For example, a recommender system
suggested movies from three categories to a specific user: crime drama,
action drama and romantic movies (the exploration phase). The user
only selected romantic movies to watch. At this stage, the recommender
system could simply decide that this is the only category of movies
that the user likes and only every recommend that types of movies (the
exploitation phase). However, it may also be the case that there are
other movie categories never recommended by the system that the user
likes even more than romantic movies. It might be worth for the system
to suggest movies from other categories not presented before (continue
with exploration) in the hope that the user will find movies from some
of the newly presented categories even more attractive than romantic
movies and thus buys/watches even more movies (increased reward for
the system).

Another important aspect of reinforcement learning is that it explic-
itly considers the whole problem of a goal-directed learner interacting
with an uncertain environment. This is in contrast to other areas of
machine learning that focus on specific subproblems, such as classifica-
tion or clustering, without specifying how the ability to perform such a
task would be useful. Reinforcement learning agents, on the other hand,
have explicit goals, can sense aspects of their environments, and can
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choose actions to influence their environments. Additionally, the learner
has to operate despite significant uncertainty about the environment it
has found itself in.

There are four main subelements of a reinforcement learning system:
a policy, a reward signal, a value function, and, optionally, a model of
the environment. A policy defines how the learner will behave in a given
situation. In other words, a policy is a mapping from perceived states of
the environment to actions to be taken when in those states. A reward
signal defines the goal. At each time step, the environment sends to
the learner a single number called the reward. The learner’s objective
is to maximize the cumulative reward it obtains in the long run. The
reward thus specifies what are the positive and negative events for
the learner. For example, in case of recommender system, the positive
event is the user buying or watching the recommended movie. The long
term goal of a recommender system would be to maximize the number
of suggested movies that the user buys or watches (maximizing the
cumulative reward). The reward signal may lead to changes in policy,
i.e. if an action selected by a given policy leads to a low reward, then
the policy may be altered to select a different action in that situation
in the future. For example, if the user tends to ignore action movies,
then the recommender system might reduce the number of movies from
this categories being presented to the user. While the reward indicates
how good a given action was right after it was tried, a value function
specifies what is good in the long run, i.e. the value of a state is the total
amount of reward a learner can expect to accumulate over the future.
For example, a state might provide a low immediate reward but it may
still have a high value in the long run because it is regularly followed by
other states with high rewards. The fourth element of a reinforcement
learning systems is a model of the environment that allows the learner
to predict how the environment will behave, e.g. what reward might be
expected from a given action taken by the learner.

2.2 What are Bandits?

In this section, we will briefly describe the main aspects of bandits
algorithms and introduce some popular bandit algorithms and strategies.
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The list of algorithms described in this section is not exhaustive. We
only focus on bandit algorithms that are regularly referred to in most
of the section of the survey and so the brief description here serves
as a quick reference point. Certain family of bandit algorithms that
are confined only to one chapter, e.g. dueling bandits (Section 5.1) or
graph-based bandits (Section 6.2.1), are only describe in more detail in
that particular section.

In terms of reinforcement learning, bandit algorithms provide a
simplified evaluative setting that involves learning to act in one sit-
uation (or one state) only (Sutton and Barto, 1998). In its simplest
formulation, a multi-armed bandit problem, i.e. a bandit with more
than one arm, consists of a set of K probability distributions 〈p1, . . . pK〉
with associated expected values 〈µ1, . . . µK〉 and variances 〈σ2

1, . . . , µ
2
K〉.

Initially, the pi are unknown to the player. At each round, t = 1, . . . , T
the learner selects an arm ai and receives a reward ρi(t) ∼ pi(t). In a
practical application, the learner could be a recommender system with
the arms corresponding to product categories and the reward being a
click or the act of purchase. In the simplest bandit formulation, the
rewards of each arm are independent of each other so at each round t the
learner only sees the reward associated with arm ai tried at this round
and no information is provided about any other arms. The learner has
two, seemingly conflicting, goals: finding out which arm has the highest
expected value, while trying to gain as many high rewards as possible.
In case of a recommender system that would correspond to finding out
which product categories (arms) are of most interest to the user, while
trying to ensure that as many products are purchased by the user as
possible (high reward). Bandit algorithms specify a strategy by which
the learner should choose an arm ai at each round t. The most popular
performance measure for bandit algorithms is the total expected regret
defined as the difference between the total reward accumulated so far
and the total reward if the learner always pulled the arm with the
highest payoff:

RT = Tµ? −
T∑
t−1

µi(t),
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where µ? = maxi=1,...,K µi is the expected reward from the best arm
and T is the total number of rounds or trials.

Another point often mentioned in connection with bandit algorithms
is the time horizon, i.e. how long should the exploration phase last, which
could be defined in terms of the number of trials or the actual time-span
of exploration. In certain application, defining the time-horizon can
have an effect on the performance of the algorithm, e.g. in the case
of a recommender system there might differences in user behaviour in
different days of the week so the exploration phase should cover at least
a whole week to capture all the variations.

ε-greedy

The ε-greedy algorithm is a popular heuristic for handling the explo-
ration/exploitation trade-off. It is widely used due to its simplicity in
terms of implementation and because it can easily generalize to many
sequential decision problems (Kuleshov and Precup, 2014), where an
agent’s choice of action now depends on the actions they will choose in
the future, for example scheduling.

At each round t, ε-greedy selects the arm with the highest empirical
mean with probability 1− ε, and selects a random arm with probability
ε. In other words, given initial empirical means µ̂1, . . . , µ̂K :

pi(t+ 1) =

1− ε+ ε/k if i = arg maxj=1,...,K µ̂j(t)
ε/k otherwise

The ε-greedy algorithm forms a basis of a number of algorithms
discussed in this survey and is often used as a baseline in testing.

Upper Confidence Bound

The Upper Confidence Bound (UCB) (Agrawal, 1995) family of algo-
rithms is a simpler and more elegant implementation of the idea of
optimism in the face of uncertainty (Lai and Robbins, 1985). Unlike
ε-greedy, many of the UCB algorithms have theoretical guaranties in
terms of its performance. One of the simplest UCB algorithms, UCB1
(Auer et al., 2002a), maintains the empirical means of each arm as well
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as the number of times that each arm has been played ni(t). Initially,
each arm is played once. At round t, the algorithm chooses the arm
ai(t) to play as follows:

ai(t) = arg max
i=1,...,K

(
µ̂i +

√
2 ln t
ni

)

At round t, the expected regret of UCB1 is bounded by:

8
∑

i:µi<µ?

ln t
∆i

+
(

1 + π2

3

)
k∑
i

∆i,

where ∆i = µ? − µi.
Auer et al. (2002a) also propose UCB1-Tuned, which performs better

in practice than UCB1 but comes without theoretical guarantees. The
main feature of UCB1-Tuned is that it takes into account the variance
of each arm and not only its empirical mean. At round t, the algorithm
picks arm ai as follows:

ai(t) = arg max
i=1,...,K

(
µ̂i +

√
ln t
ni

min
(1

4 , Vi(ni)
))

,

where Vi(t) = σ̂2
i (t) + 2 ln t

ni(t) . The estimate of the variance σ̂2
i (t) can be

computed by maintaining the empirical sum of squares of the reward,
in addition to the empirical mean.

Due to the fact that in both algorithms each arm has to be played
multiple times in order to calculate its empirical mean and variance,
simple upper confidence bound strategies do not scale up to problems
that require a large number of arms. However, the UCB1 algorithm is
often used as a baseline in many experiments mentioned throughout
this survey.

Linear and Contextual Bandits

Contextual bandits (Zhou, 2015) are an extension of the multi-arm
bandit problem, where at each round the player has access not only to
a bandit arm but also to a context associated with this iteration. The
player’s aim is to collect enough information about how the context
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vectors and rewards of the arms relate to each other, so that the next
best arm to play can be predicted by considering the feature vectors.
For example, in a news personalization system, each news articles could
be treated as an arm, and the features of both articles and users as
contexts. The system then selects articles for each user to maximize
click-through rate or dwell time. Contextual bandits play an important
role in recommender systems. In Chapter 6, we will look in more detail
how contextual bandits have been applied to improve personalization
or the cold-start problem.

Many contextual bandits assume a linear dependency between the
expected reward of an arm and its context (linear bandits). LinRel
(Auer, 2002) was one of the first methods to extend the UCB algorithm
to contextual cases. LinRel assumes that for each arm ai there is an
associated feature vector xi and the expected reward of arm ai is linear
with respect to its feature vector. The algorithm maintains an implicit or
explicit representation of the estimate ŵ of the unknown weight vector
w which maps context features to relevance scores. In each round t,
LinRel algorithm obtains an estimate ŵt by solving the linear regression
problem yt ≈ Xt · ŵt, where yt = (y1, . . . , yt−1) is the column vector of
relevance scores, or rewards, received so far, and Xt = (x1, . . . , xt−1)
is the matrix of row feature vectors of datapoints (arms) tried up to
time t. Based on the estimated weight vector ŵ, LinRel calculates an
estimated relevance score ŷi = xi · ŵ for each arm ai that has not yet
been tried by the player. The arm with the largest upper confidence
bound for the relevance score is presented to the player. The upper
confidence bound for an arm ai is calculated as ŷi + ασ̂i, where σ̂i is
an upper bound on the standard deviation of the relevance estimate
ŷi. The constant α is used to adjust the confidence level of the upper
confidence bound. In a regularized version of the algorithm, in each
round t for each arm ai, LinRel calculates:

ci = xi · (XT
t Xt + γI)−1XT

t ,

where γ is the reguralization parameter and I is the identity matrix.
The arm that maximizes ci · yt + α

2 ‖ ci ‖ for some specified constant
α > 0.
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LinUCB (Li et al., 2010a) is another contextual linear bandit similar
to LinRel that has been used extensively in recommender system and
personalization. We describe it in more detail in Section 6.1.

Gaussian Process UCB (GP-UCB) (Dorard et al., 2009; Srinivas
et al., 2010) is another contextual bandit algorithm inspired by the
UCB algorithm popular in IR and recommender systems. The Gaussian
Process can be viewed as a prior over a regression function f . GP-UCB
is a Bayesian approach to infer the unknown reward function f . We
describe it in more detail in Section 6.1.

2.2.1 Thompson Sampling

Thompson Sampling (Thompson, 1933) is one of the oldest heuristics for
solving the exploration/exploitation trade-off in a multi-armed bandit
setting. It is a randomized algorithm based on Bayesian principles. Its
theoretical foundations are not as strong as that of UCB algorithms,
however, its empirical performance tends to be significantly better com-
pared to many state-of-the art bandit methods – hence its frequent use
in many practical applications, in particular in the area of recommender
systems.

The main idea behind Thompson sampling is to randomly draw
each arm according to its probability of being optimal. In a Bayesian
setting, which is frequently used in recommendation and information
retrieval, Thompson sampling can be explained as follows (Chapelle
and Li, 2011). The set of past observations D is made of triplets
(xi, ai, ρi), where x is a representation of a context, a is action taken
(arm pulled) and ρ is the reward. D is modeled using a parametric
likelihood function P (ρ | a, x, θ) depending on some parameters θ.
Given some prior distribution P (θ), the posterior distribution of these
parameters is given by the Bayes rule P (θ | D) ∝ ΠP (ρi | ai, xi, θ)P (θ).
If the aim is to maximize the immediate reward (exploitation), then the
action that maximizes the expected reward E(ρ | a, x) should be chosen.
But in an exploration/exploitation setting, the probability matching
heuristic consists in randomly selecting an action a according to its
probability of being optimal. In the standard K-armed Bernoulli bandit,
each action corresponds to the choice of an arm a and the reward follows
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a Bernoulli distribution with mean θ?i . It is standard to model the mean
reward of each arm using a Beta distribution. The instantiation of
Thompson sampling for the Bernoulli bandit is given in Algorithm 1. It
is easy to adapt the algorithm when different arms use different prior
Beta distributions.

Algorithm 1 Thompson sampling for the Bernoulli bandit
Require: α, β prior parameters of a Beta distribution
Si = 0, Fi = 0, ∀i //Success and failure counters
for all t = 1, . . . , T do

for all i = 1, . . . ,K do
Draw θi according to Beta(Si + α, Fi + β)

end for
Draw arm i = arg maxi θi and observe reward ρ
if ρ = 1 then
Si = Si + 1

else
Fi = Fi + 1

end if
end for



3
Click Models and Bandit Algorithms

Click models learn from user clicks to help understand and incorporate
users’ implicit feedback (Chuklin et al., 2015). Previous studies of user
click behaviour provide a spectrum of hypotheses and models on how
an average user examines and clicks documents returned by a search
engine with respect to the submitted query. This chapter provides
a brief overview of bandit algorithms inspired by click models, most
notably the Cascade Model (Craswell et al., 2008), the Dependent Click
Model (DCM) (Guo et al., 2009) and the Position Based Model (PBM)
(Richardson et al., 2007).

The chapter is divided into three sections. Section 3.1 is devoted to
the Cascade Model, Section 3.2 to the DCM, and Section 3.3 to the
PBM. In each section, we first introduce the basic tenets behind each
click model and then briefly describe the algorithms incorporating ideas
from each model in a chronological order.

3.1 Cascade Model

A popular way to model user behaviour in web search is through the
cascade model (Craswell et al., 2008). The model makes two assumptions:
(1) linear traversal through the ranking; and (2) that items below the
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clicked result are not examined. The user views search results from top
to bottom, deciding whether to click each result before moving to the
next. The documents before the first click result are assumed to be
not attractive because the user examines them without clicking on any
of them. The documents after the first clicked result are unobserved
because the user never examines them.

Formally, the model can be described as follows. Let us assume
that there is a list K of items A that come from a ground set E =
1, . . . , L, such as a list of documents. The user traverses a list of K items
A = (a1, . . . , aK) ∈ ΠK(E), where ΠK(E) is the set of K permutations
of set E. The model is parametrized by attraction probabilities w ∈
[0, 1]E . After the user examines item aK , the item attracts the user
with probability w(ak), independently of other items. If the user is
attracted by item ak, she clicks on it and stops the search. Thus, the
probability that item ak is examined by the user is Πk−1

i=1 (1 − w(ai)),
while the probability that the user finds at least one item attractive is
1− ΠK

i=1(1− w(ai)). This objective is maximized by K most attractive
items.

3.1.1 Cascading Bandits

Kveton et al. (2015a) develop an online learning version of the cascade
model called Generalized Cascading Bandit. In this model, the learning
agent aims to learn the attraction probabilities of items. The goal of
the agent is to maximize its total reward.

In theoretical terms, the model is formulated as a stochastic combi-
natorial partial monitoring problem (Kveton et al., 2015c) represented
by a tuple B = (E,P,K), where E = 1, . . . , L is a ground set of L
items, P is a probability distribution, and K ≤ L is the number of
recommended items. Weights w are drawn from the probability distri-
bution P and wt(e) is the preference of the user for item e at time t. If
the user clicks on an item, then wt(e) = 1.

The interaction between the learning agent and the user can be
described as follows. At time t, the agent recommends a list of K items
At = (at1, . . . , atK) to the user. The user examines the list, from the first
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item at1 to the last atK , and clicks on the first attractive item. If the
user is not attracted by any item, the user does not click on any item.

The agent at time t receives feedback:

Ct = argmin 1 ≤ k ≤ K : wt(atk) = 1,

which is the click of the user. Since the user clicks on the first attractive
item in the list, the observed weights of all recommended items at time
t can be determined from Ct. The reward of the agent at time t can be
written in several forms. For example, as maxk wt(atk) at least one item
in list At is attractive; or as f(At, wt), where:

f(A,w) = 1−ΠK
k=1(1− w(ak)).

The weights of the items in the ground set E are distributed indepen-
dently and the weight of any item at time t is drawn independently of
the weights of the other items.

Kveton et al. (2015a) propose two algorithms to solve the learning
variant of the cascade model: CascadeUCB1 and CascadeKL-UCB. Cas-
cadeUCB1 is motivated by UCB1 (Auer et al., 2002a) (Section 2.2) and
CascadeKL-UCB is motivated by KL-UCB (Garivier and Cappé, 2011).
KL-UCB is an online, horizon-free index policy for stochastic bandit
problems shown to be more efficient and stable compared to various
UCB policies. The pseudocode for both algorithms is in Algorithm 2.
The algorithms differ only in how they estimate the upper confidence
bound (UCB) Ut(e) on the attraction probability of item e at time t.
After that, they recommend a list of K items with largest UCBs:

At = arg max f(A,Ut).

After the user provides feedback Ct, the algorithms update their esti-
mates of the attraction probabilities w(e) for all e = atk.

The UCBs are computed as follows. UCB on the attraction proba-
bility of item e at time t is:

Ut(e) = ŵTt−1(e)(e) + ct−1,Tt−1(e),

where ws(e) is the average of s observed weights of item e, and Tt(e)
is the number of times that item e is observed in t steps, and:

ct,s =
√

(1.5 log t)/s



316 Click Models and Bandit Algorithms

is the radius of a confidence interval around ws(e) after t steps. In
CascadeKL-UCB, the UCB is:

Ut(e) = max q ∈ [wTt−1(e)(e), 1] :
Tt−1(e)DKL(wTt−1(e)(e)‖q) ≤ log t+ 3 log log t,

where DKL(p‖q) is the Kullback–Leibler (KL) divergence between two
Bernoulli random variables with means p and q.

Algorithm 2 Cascading Bandits Algorithm
//Initialization
Observe w0 ∼ P
∀e ∈ E : T0 ← 1
∀e ∈ E : w1(e)← w0(e)
for all t = 1, . . . , n do
Compute UCBs Ut(e)
// Recommend a list of K items and get feedback
Let at1, . . . , atK be K items with largest UCBs
At ← (at1, . . . , atK)
Observe click Ct ∈ 1, . . . ,K
//Update statistics
∀e ∈ E : Tt(e)← Tt−1(e)
for all k = 1, . . . ,min{Ct,K} do
e← atk
Tt(e)← Tt(e) + 1
ŵTt(e)(e)←

Tt−1(e)ŵTt−1(e) (e)+1{Ct=k}
Tt(e)

end for
end for

The upper bounds of both algorithms are O(log t), linear in the
number of items L, and they improve as the number of recommended
items K increases. The bounds do not depend on the order of recom-
mended items. Experimental results based on simulations show that
CascadeKL-UCB outperforms CascadeUCB1 (Kveton et al., 2015a),
which is in concordance with the general observation that KL-UCB
tends to outperform UCB1 when the expected payoffs of arms are low
(Garivier and Cappé, 2011).
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3.1.2 Combinatorial Cascading Bandits

Combinatorial Cascading Bandits (Kveton et al., 2015b) generalizes
cascading bandits to arbitrary combinatorial constraints, which allows
the algorithm to learn what items might be attractive to the user starting
from any list of K items out of L. At each step the agent chooses a set
of items and receives a reward of one if and only if the weights w of all
chosen items are one. The weights of the items are binary, stochastic,
and drawn independently of each other. The agent only observes the
index of the first chosen item with weight zero. In the combinatorial
cascading bandits framework, there is no strong assumption that the
items in list K are ordered according to their degree of relevance or
that the user only clicks on one item in the list. In information retrieval
systems or recommenders, this approach can facilitate the selection of a
list of K items that reduces the probability that the user will not find
any of the recommended items attractive.

The combinatorial cascading bandit problem can be solved through
the CombCascade algorithm (Kveton et al., 2015b) – an algorithm that
also belongs to the UCB family. At time t, CombCascade operates in
three stages. First, it computes the UCBs Ut on the expected weights
of all items in E:

Ut(e) = min{ŵTt−1(e)(e) + ct−1,Tt−1(e), 1},

where ŵs(e) is the average of s observed weights of item e, Tt(e) is
the number of times that item e has been observed in t steps, and
ct,s =

√
(1.5 log t)/s is the radius of a confidence interval around ŵs(e).

Next, CombCascade chooses the optimal solution with respect to these
UCBs:

At = arg max f(A,Ut).
Finally, CombCascade observes the index of the first item in At with
weight zero Ot and updates its estimates of the expected weights based
on the weights of the observed items:

wt(atk) = 1{k < Ot} k = 1, . . . ,min{Ot, | At |}

for all items atk such that k 6= Ot. CombCascade is computationally
efficient and its regret is polynomial.
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3.1.3 Linear Cascading Bandits

All the algorithms discussed so far have one main disadvantage – they
are not practical for problems when L is large. This is due to the
assumption of independence of each item in E, which means that the
user would have to see every item in the dataset at least once before
the system could start behaving intelligently. To address this issue,
Zong et al. (2016) propose linear cascading bandits, an online learning
framework that makes the assumption that the attraction probabilities
of items are a linear function of the features of items1.

The key assumption is that the attraction probability of each item
e, w(e), can be approximated by a linear combination of some known
d-dimensional feature vector xe ∈ Rd×1 and an unknown d-dimensional
parameter vector of θ? ∈ Rd×1, which is shared among all items. The
assumption is that there exists θ? such that w(e) ≈ xTe θ? for any e ∈ E.

Two learning algorithms were proposed to solve this problem (Zong
et al., 2016): cascading linear Thompson sampling (CascadeLinTS)
and cascading linear UCB (CascadeLinUCB). When the above linear
generalization is perfect, their regret is independent of L and sublinear
in t, which makes them suitable for learning to recommend from large
ground sets E. The CascadeLinTS algorithm is based on Thompson
Sampling (Agrawal and Goyal, 2012; Thompson, 1933) (Section 2.2.1),
while the CascadeLinUCB algorithm is based on linear UCB (Wen et al.,
2015).

Both algorithms represent their past observations as a positive-
definite matrix Mt ∈ Rd×d and a vector Bt ∈ Rd×1. Specifically, let Xt

be a matrix whose rows are the feature vectors of all observed items in
t steps and Yt be a column vector of all observed attraction weights in
t steps. Then:

Mt = σ−2XT
t Xt + Id

is the gram matrix in t steps and:

Bt = XT
t Yt,

where Id is a d × d identity matrix and σ > θ is a parameter that
controls the learning rate.

1See Section 6.1 for more information about linear bandits.
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The algorithms operate in three stages. First, they estimated the
expected weight of each item e based on their model of the world. Cas-
cadeLinTS randomly samples parameter vector θt from a normal distri-
bution and then estimates the expected weight as xTe θt. CascadeLinUCB
computes an upper confidence bound Ut(e) for each item e:

Ut(e) = min{xTe θt + c
√
xTeM

−1
t−1xe, 1}.

Second, both algorithms choose the optimal list At. Finally, they receive
feedback, and update Mt and Bt:

Mt = Mt + σ−2xex
T
e

Bt = Bt + xe1{Ct = k}

CascadeLinTS was evaluated on several recommendation problems
for various dataset sizes and number of features: restaurant recommen-
dation, song recommendation and movie recommendation. In general,
for small datasets the regret of CascadeLinTS and CascadeUCB1 is
similar. However, as the size of the dataset increases, the regret of
CascadeUCB1 is orders of magnitude larger compared to CascadeLinTS.
Additionally, CascadeLinTS performs well irrespective of the number of
features.

3.1.4 Contextual Cascading Bandits

Another approach to incorporating context into the cascading bandits
model was proposed by Li et al. (2016c). Contextual information includes
various user and item information (Section 6.1). Li et al. also introduce
position discounts to the cascading bandit. Cascading bandits (Kveton
et al., 2015a) treat all positions in the list of K items suggested to the
user equally, however, in practical applications different positions may
result in different rewards. For example, in online recommendation, it
is more satisfactory for the user to find their item of interest as early as
possible in the list. To model these preferences, position discounts are
applied whereby the items in the recommended set are presented in the
decreasing order of UCBs.

The user is presented with K items. Each item a is represented by
a feature vector x. Each feature vector xa combines the information of
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the user and the corresponding base arm a. For example, if the the user
at time t is characterized by a feature vector ut and the base arm a has
a feature vector ga, then xt,a = utg

T
a is the combined feature vector of

base arm a at time t. The learning agent also knows of the user’s past
history H, which contains feedback information at all time s < t, as
well as contextual information at time t.

Additionally, the reward received by the agent is subject to position
discounts γk ∈ [0, 1], k ≤ K. For example, if the user selects the first
item on the recommended list, the learning agent will receive reward 1
and if the user selects an item further down the list, the learning agent
will receive a discounted reward γk.

A solution to this problem is the C3-UCB algorithm. After comput-
ing the UCBs based on which a list of items is selected for presentation
to the user, the algorithm computes an estimate of θ̂t, which can be
viewed as a ridge regression problem:

θ̂t = (XT
t Xt + λI)−1XT

t Yt,

where X is a matrix with each row being the feature vector of items
presented to the user up to time t, i.e. γkxs,ak

, and Yt is a column vector
whose elements are the weights of the corresponding feature vectors in
X, i.e. γkws(ak), with regularization parameter λ > 0. A new confidence
radius βt(σ) is also calculated:

βt(σ) = R

√
ln
(det(Vt)
αdσ2

)
+
√
λ,

where Vt = XT
t Xt + λI and R is the current regret. Finally, the UCB is

defined as:

Ut(a) = min{θ̂Tt−1xt,a + βt−1(σ) ‖ xt,a ‖V −1
t −1, 1}

Experimental results on movie recommendation using the MovieLens
dataset show that in comparison to CombCascade (Kveton et al., 2015b),
C3-UCB’s rewards are on average 3.5 times higher, which indicates
that incorporating more contextual information into the algorithm can
greatly improve the quality of the recommended items.

In the Cascade Model, the positions of the items in the recommended
list are not taken into account in the reward process. Indeed, some of
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the experimental results presented in Kveton et al. (2015a) point to
the counter-intuitive conclusion that, from the user’s perspective, the
optimal strategy from the perspective of the learning agent might be to
show the most relevant items at the end of the list in order to maximize
the amount of observed feedback.

To overcome these limitations, Combes et al. (2015) introduced
weights attributed to positions in the list, with a click on position
k ∈ {1, . . . ,K} providing a reward wk with decreasing sequence (wk)k
to enforce the ranking behaviour. However, no rule is given for setting the
weights (wk)k that control the order of importance of the positions. The
authors propose an algorithm based on KL-UCB (Garivier and Cappé,
2011) called Parsimonious Item Exploration PIE(l)2. At time t, a list of
items At = (at1, . . . , atK) is presented to the user. The list is composed
of K items with the highest empirical means sorted in decreasing order
– these are the “leaders” at time t. The set B(t) contains items which are
not in the set of leaders and whose indices are larger than the empirical
mean of item atK . The set B(t) may potentially contain items that are
better than the worst current leader. Additionally, we create a list Uki (t)
obtained by considering the K − 1 first items of the set At and placing
item i at position k. The PIE(l) algorithm proceeds as follows. If B(t)
is empty, then the leader is selected as ut = At. Otherwise, ut = At is
selected with probability 1

2 and ut = Uki(t)(t) with probability 1
2 , where

i(t) is chosen from B(t) uniformly at random. The goal of the algorithm
is to ensure that the items on the list presented to the user are relevant
but also maintain a level of diversity at the same time. The PIE(l)
algorithm has a low complexity and at each round O(T + L log(T ))
operations. Experimental results using the MovieLens dataset show that
PIE(l) significantly outperforms KL-UCB.

3.2 Dependent Click Model

The cascade model (Section 3.1) assumes that a user abandons exami-
nation of the ranked list of items after the first click. However, in many

2Note that l in PIE(l) indicates the position in the list of presented K items,
thus, the name of the algorithm should be PIE(k) in order to be consistent with the
notation used in this chapter. However, the original name of the algorithm is PIE(l).
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real-world applications multiple clicks are possible, especially for infor-
mational queries which tend to have a relatively large average number
of clicks per query session (Section 4.2). Guo et al. (2009) propose the
dependent click model (DCM) which generalizes the cascade model to
multiple clicks by including a set of position-dependent parameters to
model probabilities that the user returns to the search result page and
resumes the examination after a click.

As in the cascade model (Section 3.1.1), the DCM model assumes
that the user scans a list of K items A = (a1, . . . , aK) from the first
item a1 to the last aK . The model is parameterized by item-dependent
attraction probabilities w ∈ [0, 1]E and position-dependent termination
probabilities v ∈ [0, 1]K . The user interacts in this model as follows. After
the user examines item ak, the item attracts the user with probability
w(ak), independently of the other items. If the user is attracted by
item ak, the user clicks on it and terminates the search with probability
v(k). In this case, it is assumed that the user is satisfied with item ak
and does not examine the remaining items. If the user is not attracted
by item ak, or the user is attracted but does not terminate, the user
examines the next item ak+1. The probabilities w(ak) and v(k) are
conditional on that the user examines the item, and that the examined
item is attractive. Thus, the probability that the user leaves satisfied
given list A is 1−ΠK

k=1(1− v(k)w(ak)). This objective is maximized by
K most attractive items, where the kth most attractive item is placed
at the position with the kth highest termination probability.

Katariya et al. (2016b) propose a learning variant of the DCM model
called DCM bandits. At time t, the learning agent recommends a list of
K items. After the user examines the list, the learning agent receives a
vector of observations ct ∈ {0, 1}K indicating the clicks of the user. In
particular, ct(k) = 1 if the user clicks on item atk at position k at time
t. The learning agent receives a reward rt, which is unobserved. The
reward is binary and is one if the user is satisfied with at least one item
in the presented list, i.e. an item is attractive to the user, wt(e) = 1,
and its position leads to termination, vt(k) = 1.

Learning in DCM bandits seems difficult because the observations
ct are insufficient to identify whether the recommended items lead to
a reward. For example, the learning agent recommends items At =
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(1, 2, 3, 4) and observes user clicks ct = (0, 1, 1, 0). This feedback can
be interpreted in two ways. The first explanation is that item 1 is not
attractive, items 2 and 3 are attractive, and that the user does not
exit at either positions 2 or 3. The second explanation is that item 1
is not attractive, items 2 and 3 are attractive, and that the user does
not exit at position 2, but exits at position 3. In the first case, the
learning agent receives no reward; in the second one, it does. Since
the reward is not directly observed, DCM bandits can be viewed as
an instance of partial monitoring. However, DCM bandits cannot be
solved efficiently by existing algorithms for partial monitoring because
the action set is combinatorial. In DCM bandits, an additional mild
assumption is imposed to allow efficient learning: the order of the
termination probabilities is known to the learning agent.

The proposed solution to DCM bandits is an algorithm called
dcmKL-UCB, which, similarly to CascadeKL-UCB (Section 3.1.1), is
motivated by KL-UCB (Garivier and Cappé, 2011). First, the algorithm
computes the UCBs Ut on the attraction probabilities of all items in E
at time t:

Ut(e) = max{q ∈ [w, 1] : w = ŵTt−1(e)(e),
Tt−1(e)DKL(w ‖ q) ≤ log t+ 3 log log t},

where DKL(p ‖ q) is the Kullback–Leibler (KL) divergence between
Bernoulli random variables with means p and q; ŵs(e) is the average
of s observed weights of item e; and Tt(e) is the number of times that
item e is observed in t steps. Second, dcmKL-UCB recommends a list
of K items with largest UCBs:

At = arg max
A∈ΠK(E)

f(A,Ut, v),

After the user provides feedback ct, dcmKL-UCB updates its estimates
of ŵ(e) up to position min{C lastt ,K}, where C lastt is the position of the
last click. The estimates of weights is:

ŵTt(e) =
Tt−1(e)ŵTt−1(e)(e) + ct(k)

Tt(e)
The algorithm dcmKL-UCB was evaluated on the Yandex dataset, an
anonymized search log of 35M million search sessions, and compared to
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KL-UCB (Garivier and Cappé, 2011). The regret of dcmKL-UCB is at
least half than that of the baseline.

3.3 Position-Based Model

The Cascade Model (Section 3.1) and the DCM (Section 3.2) models
assume that a portion of the recommended list is explicitly examined
by the user, which allows the learning agent to access the rewards
corresponding to the unbiased user’s evaluation of each item. In the
Position-Based Model (PBM) (Richardson et al., 2007), each position
in the list is also endowed with a binary examination variable which is
equal to one only when the user paid attention to the corresponding item.
However, this variable, which is independent of the user’s evaluation of
the item, is not observable. Compared to the Cascade model, the PBM is
challenging due to the fact that the learning agent only observes actual
clicks, however, non-clicks may also provide additional information but
this information tends to be ambiguous. Thus, combining observations
made at different positions becomes a non-trivial statistical task.

3.3.1 Contextual Information and PBM Bandits

Lagrée et al. (2016) propose a model that exploits information about
the display position bias. Their model is characterized by examination
parameters (κk)1≤l≤K , where κk is the probability that the user effec-
tively observes the item in position k. At time t, a list of items A(t) is
shown to the user and the learning agent observes the user feedback but
the observation Zk(t) at position k is censored being the product of two
independent Bernoulli variables Yk(t) and Ck(t), where Yk(t) ∼ B(κk)
is non null when the user considered the item in position k, which is
unknown to the learning agent, and Ck(t) ∼ B(θAk(t)) represents the
actual user feedback to the item shown in position k, where θ is the arm
expectation. The learning agent receives a reward rA(t) = ΣK

k=1Zk(t).
It is assumed that the examination parameters (κk) are known to the
learning agent – they can be estimated, e.g. from historical data.

The authors introduce two algorithms for the PBM problem. The
PBM-UCB algorithm requires an “exploration bonus” based on UCB
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derived from Hoeffding’s inequality:

Ue(t, δ) = Se(t)
Ñe(t)

+
√
Ne(t)
Ñe(t)

√
δ

2Ñe(t)
,

where Se(t) = ΣK
l=1Se,k(t), Se,k(t) = Σt−1

s=1Zk(s)1{At(s) = e}, Ne(t) =
ΣK
l=1Ne,k(t), Ne,k(t) = Σt−1

S=1Zk(s)1{At(s) = e}. The UCB also incor-
porates bias-corrected versions of the counts: Ñe(t) = ΣK

l=1Ñe,k(t),
Ñe,k(t) = Σt−1

S=1Zk(s)κk1{At(s) = e}. The algorithm sorts optimistic
indices in decreasing order and pulls the corresponding first K arms.

The PBM-PIE algorithm is an adaptation of the PIE(l) algorithm
(Combes et al., 2015) introduced for the Cascade Model (Section 3.1.4).
At each round, the learning agent potentially explores at positionK with
probability 1

2 using the UCB for each arm e, which also incorporates the
examination parameters (κk). In other positions, k = 1, . . . ,K−1, PBM-
PIE selects the arms with the largest estimates θ̂e(t) = Se(t)/Ñe(t).
Simulation experiments show that PBM-PIE outperforms PBM-UCB
and the baseline KL-UCB, which in turn outperforms PBM-UCB.

The drawback of the approach proposed by Lagrée et al. (2016) is the
fact that the examination parameters are estimated off-line, which limits
the usage of these algorithms. Komiyama et al. (2017) expands PBM
by making an additional assumption about the examination parameters
κ(k), namely it is natural that items that are high up the list receive
more clicks. Thus, κ1 > κ2 > . . . > κK > 0 and this order is known.
Additionally, κ1 = 1. This model involves E +K parameters {θ?i }i∈[E]
and {κ?k}k∈[K], where K is the number of arms and K is the number
of slots in a list of items presented to the user. Each arm e ∈ [E] is
associated with a distinct parameter θ?i ∈ (0, 1), and each slot k ∈ [K]
is associated with a parameter κ?k ∈ (0, 1]. At each round t, the system
selects k items (arms) for presentation and receives a corresponding
binary reward (click or non-click) for each item. The reward is drawn
from a Bernoulli distribution. The parameters except for κ1 = 1 are
unknown to the learning agent. The goal for the learning agent is to
maximize the cumulative rewards.

The solution to this problem is provided by Permutation Minimum
Empirical Divergence (PMED) algorithm. The algorithms contains two
loops: LC = LC(t) is the set of K-allocations in the current loop, and
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LN = LN (t) is the set of K-allocations that are to be drawn in the next
loop. In the LC a set of permutations of [E]×[K] of each pair of arm and
slot is produced. Loop LC provides a uniform exploration over all pairs
of arms and slots. For every m ∈ [E], let vmod

m be an K-allocation (1 +
mod E(m), 1 + mod E(1 +m), . . . , 1 + mod E(K +m− 1)), where
mod E(x) is the minimum non-negative integer among {x− cE : c ∈ N}.
If some pair (e, k) of arm and slot is not allocated α

√
log t times, a

corresponding K-allocation is put into the LN loop. If no pair is put
to LN and LC is empty, then the algorithm puts top K arms with
the largest {θ̂e(t)} into LN . By introducing this bipartite matching
algorithm, the number of possible candidate arms is reduced, which
allows the algorithm to run in polynomial time. Experimental results
on synthetic and real data show that in comparison to PBM-PIE
and dcmKL-UCB, (Section 3.2) the gap between PMED and existing
algorithms is not substantial, however, the existing algorithms suffer
larger regret than PMED.

3.3.2 Stochastic Rank-1 Bandits

Katariya et al. (2016a) and Katariya et al. (2017) propose stochastic
rank-1 bandits, a class of online learning problems where at each step a
learning agent chooses a pair of row and column arms, and receives the
product of their values as a reward. This problem can be directly applied
to PBM, where the item in the list is clicked only if it is attractive and
its position is examined. Under these assumptions, the pair of the item
and position that maximizes the probability of clicking is the maximum
entry of a rank-1 matrix, which is the outer product of the attraction
probabilities of items and the examination probabilities of positions.
The problem is defined by a tuple {K,L, Pu, Pv}, whereK is the number
of rows, L is the number of columns, Pu is a probability distribution
over a unit hypercube [0, 1]K , and Pv is a probability distribution over
a unit hypercube [0, 1]L. At time t, the learning agent chooses arm
(it, jt) ∈ [K] × [L], and then observes ut(it)vt(jt), which is also its
reward, where ut and vt are probabilities vectors drawn from Pu and Pv.
The goal of the agent is to maximize its expected cumulative reward in
t steps.
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The stochastic rank-1 bandits problem can be solved through an
elimination algorithm called Rank1Elim. The key idea in Rank1Elim is
to explore all remaining rows and columns randomly to estimate their
expected rewards and then eliminate those rows and columns that seem
suboptimal.

In the algorithm, hUl (i) is the index of the most rewarding row whose
expected reward is believed by Rank1Elim to be at least as high as that
of row i in stage l. Initially, hU0 (i) = i. When row i is eliminated by row
il in stage l, hUl+1(i) is set to il; then when row il is eliminated by row
il′ in stage l′ > l, hU

l′+1(i) is set to il′ ; and so on. The corresponding
column quantity, hVl (j) is defined and updated analogously.

At each stage of the algorithm has two main steps: exploration and
elimination. In the row exploration step, each row i ∈ Il is explored
randomly over all remaining columns Jl such that its expected reward
up to stage l fulfills a pre-defined condition. To guarantee this, column
j ∈ [L] is sampled randomly and then substituted with column hl(j),
which is at least as rewarding as column j. The observations are stored in
reward matrix CUl ∈ RK×L. The column exploration step is analogous. In
the elimination step, the confidence intervals of all remaining rows i ∈ Il
are estimated from matrix CUl ∈ RK×L, and the confidence intervals of
all remaining columns j ∈ Jl are estimated from CVl ∈ RK×L.

Rank1Elim’s regret scales linearly with the number of rows and
columns on instances where the minimum of the average row and column
rewards µ is bounded away from zero. However, Rank1Elim fails to
be competitive with straightforward bandit strategies, such as UCB1,
as µ → 0. Consider, for example, a setting when K = L and the row
and column rewards are Bernoulli distributed. Let the mean reward of
row 1 and column 1 be ∆, and the mean reward of all other rows and
columns be 0. For this setting, µ = ∆/K, and consequently the regret
of Rank1Elim is O(µ− 2∆− 1K log t) = O(K3 log t). However, a naive
bandit algorithm that treats each row-column pair as unrelated arms has
O(K2 log t) regret. Katariya et al. (2017) propose that this drawback
of Rank1Elim can be eliminated by replacing the UCB1 confidence
intervals used by Rank1Elim by strictly tighter confidence intervals
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based on KL divergences. The new algorithm is called Rank1ElimKL
(Garivier and Cappé, 2011).

The performance of Rank1ElimKL, Rank1Elim and UCB1 was
compared on models derived from the Yandex dataset. The experimental
data averaged over 20 most frequent queries in the dataset shows that
Rank1ElimKL’s regret is 10.9% lower than that of UCB1, and 79%
lower than that of Rank1Elim.

Stochastic click bandits (Zoghi et al., 2017) is a learning framework
for maximizing the expected number of clicks in a broad class of click
models, including the Cascade Model and the Position Based Model.
The approach is implemented through BatchRank algorithm. In order to
avoid biases due to the click model, the placement of items is randomized.
Next, the batches of items are recursively divided into more and less
attractive items, which results in a sorted list of K items, where the
k-th most attractive item is placed at position k.

The batches are explored as follows. In stage i of batch b, len(b) least
observed items remaining in batch b are randomly selected, where len(b)
is number of positions in batch b. The items are displayed at random
positions. If the number of these items is less than len(b), then they
are mixed with randomly chosen more observed items. This exploration
helps two avoid biases due to click models in two ways: (i) it is uniform
and no item in a given batch is explored more than once than any other
item in the same batch; (ii) any item in a given batch appears in any
other list with that item with the same probability. After collecting
user feedback (clicks), KL-UCB upper and lower confidence bounds
(Garivier and Cappé, 2011) (Section 3.1.1) are computed for all the
items in a given batch. Next, the algorithm tests whether the batch
can be divided into two new batches. The values of lower confidence
bound of each item in the batch are compared one by one to the value
of the highest upper confidence bound in the batch. The first batch
contains items all the items in the batch up to the position of the last
item where the above condition is fulfilled. The second batch contains
the remaining items and is over the remaining positions. The indices
of the new batches are initialized to 0. If the batch cannot be divided,
items that cannot be placed in position k or above based on the value
of their upper confidence bound are eliminated.
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Table 3.1: Summary of bandit algorithms based on click models

Model Algorithm Basis
Cascade CascadeUCB1 UCB1

CascadeKL-UCB KL-UCB
CombCascade UCB1
CascadeLinTS Thompson Sampling
CascadeLinUCB UCB1
C3-UCB UCB1
PIE(l) KL-UCB

DCM dcmKL-UCB KL-UCB
PBM PBM-UCB UCB1

PBM-PIE KL-UCB
PMED KL-UCB
Rank1Elim UCB1
Rank1ElimKL KL-UCB

Stochastic BatchRank KL-UCB

BatchRank was compared to CascadeKL-UCB (Kveton et al., 2015a)
(Section 3.1.1) and RankedExp3 (Radlinski et al., 2008a) (Section 4.1)
using the Yandex dataset. In the Cascade Model, CascadeKL-UCB
outperforms BatchRank, while in the PBM, BatchRank outperforms
CascadeKL-UCB in terms of regret overtime. BatchRank outperforms
RankedExp3 in all experiments.

3.4 Summary

In this chapter, we provided a brief overview of bandit algorithms
inspired by click models. The summary is provided in Table 3.1. In all
the discussed cases, incorporating assumptions about item attractiveness
and position biases derived from click models into a more basic bandit
policies, such as UCB1 (Auer et al., 2002a) (Section 2.2) and KL-UCB
(Garivier and Cappé, 2011), leads to the creation of more robust bandit
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algorithms which can be incorporated into information retrieval and
recommender systems.

The UCB1 (Auer, 2002) and KL-UCB (Garivier and Cappé, 2011)
form the basis of almost all the proposed algorithms. In general, KL-
UCB based algorithm achieve lower regret compared to those based on
simple UCB1 policies, which translates into more relevant items being
suggested to the user earlier on in the search. The inferior performance
of UCB1 based algorithms is largely due to the assumption independence
of each arm, which means that the algorithm requires more feedback
from the user, and it may fail to scale to large datasets, which might be
problematic for real-life applications. The performance of both UCB1
and KL-UCB based algorithms is further improved by incorporating
linearity, as in CascadeLinUCB (Section 3.1.3), or more contextual
information, as in PBM-PIE (Section 3.3.1).



4
Ranking and Optimization

This chapter focuses on the application of bandit algorithms in three
related areas of information retrieval: diversification of search results
(Section 4.1), search engine optimization and offline bandit policy eval-
uation (Section 4.2), and query auto-completion and recommendation
(Section 4.3). Section 4.1, in particular, introduces a number of the ban-
dit approaches, most notably the Ranked Bandit Algorithm (Radlinski
et al., 2008a) and Bandits in Metric Spaces (Slivkins et al., 2010), that
gave rise to new lines of research both in information retrieval and in
theoretical machine learning.

4.1 Diversifying Ranking with Bandits

Traditional approaches to ranking rely on training data, provided in the
form of human judgments, to assess the relevance of documents to a
query. The relevance score for each document is computed independently
of other documents in the dataset and then the documents are ordered
by decreasing score (Joachims, 2003). This often leads to rankings with
redundant results which are too similar to one another. User studies,
however, show that diversity at high ranks is often preferred (Teevan
et al., 2007).

331
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Radlinski et al. (2008a) formulate an approach to document ranking
that: (1) learns from users’ click data rather than manually labeled rele-
vance judgments; (2) in an online manner; (3) taking into consideration
the dependency between documents. The goal is to increase diversity in
the top k ranked documents and thus maximize the probability of the
user finding a relevant document in the top k positions of a ranking.

Two algorithms are proposed. Ranked Explore and Commit (REC)
is a greedy strategy that assumes that the user’s interests as well as the
document dataset remain constant over time. REC iteratively selects
documents for each rank. At each rank position k, every document
aj is presented a fixed number of times and the number of clicks it
receives is recorded. After n presentations, the document that received
the highest number of clicks in a given rank is permanently assigned to
that rank, which means that REC often performs badly if the user’s
interests change. The Ranked Bandit Algorithm (RBA)1 avoids this
problem by incorporating exploration to the process of assignments of
documents to rank positions. RBA runs an instance of a multi-armed
bandit (MAB) (Auer et al., 2002a) (Section 2.2) for each rank. Each of
the k copies of the MAB algorithm maintains a value for every document
in the dataset. The algorithm MAB1 is responsible for selecting the
document to show at rank 1. Next, the algorithm MAB2 determines
which document is shown at rank 2, etc. If the same document was
selected at a higher rank, then another document is picked randomly
for the lower rank. This process is repeated until all the top k rank
positions are filled. If the user clicks on one of the top k documents,
the reward for the arm corresponding to that document for the MAB
at this rank is set to 1, while the reward for the arms corresponding
to all the other documents is set to 0. The bandits corresponding to
each rank are independent of each other. The RBA approach gave rise
to two algorithms: RankUCB1, based on UCB1 (Auer et al., 2002a),
and RankEXP3, based on the EXP3 algorithm (Auer et al., 2002b).
EXP3 is designed for the adversarial setting with no assumptions on
how the clicks are generated, while UCB1 makes the assumption that

1A generalization of the Ranked Bandit Algorithm, in an abstract setting without
a specific application to Information Retrieval, was discovered independently by
Streeter and Golovin (2008) and Streeter et al. (2009).
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the user’s interests do not change. In small scale simulation experiments
RankUCB1 performs much better than RankEXP3.

RBA assumes that all the documents are independent, which means
that the algorithm does not scale up to large datasets. Taking document
similarity and ranking context into account can increase the scalability
of a ranking algorithm. Slivkins et al. (2010) and Slivkins et al. (2013)
extend the ranked bandit approach to online learning to rank in metric
spaces (Kleinberg et al., 2008) by explicitly considering correlation of
clicks and similarity between documents.

The similarity between documents is derived from a tree hierarchy,
where closer pairs of documents are considered to be more similar. Each
document a ∈ A is a leaf in the tree. On this tree, the distance between
any two nodes is exponential in the depth of their least common ancestor,
with base ε ∈ (0, 1). An alternative notion of document similarity is
correlation between clicks with the click probability µ(a) for document
a if it appears in the top rank position. Each rank position i > 1 is
examined by the user only if all the documents in higher positions are
not clicked, so the click probabilities for this position are conditional
on this event. Thus, there is a subset of documents S ⊂ A, where the
assumption is that all documents in S are not relevant to the user –
this event is indicate as ZS .

In order to traverse the tree, the “zooming algorithm” (Kleinberg
et al., 2008) is used. It maintains a set of active subtrees which parti-
tion the leaf set. In each round, the active subtree with the maximal
index is chosen, which is the best upper confidence bound on the click
probabilities in this subtree. It is defined via the confidence radius:

rad =
√

4 log(T )/(1 + ] samples),

where T is the time horizon. The algorithm then zooms in on a given
active subtree, de-activates it and activates all its children.

In order to improve the performance of the above algorithm, the
context is taken into consideration as well. In each round, a context
x is revealed, the algorithm chooses a document a, and the payoff is
an independent {0, 1} sample with expectation µ(a | x). Contexts are
leaves in a context tree. Further, metrics D and Dx provide similarity
information about documents and contexts, respectively. Thus, for any
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two documents a, a, and any two contexts x, x,:

| µ(a | x)− µ(a, | x,) |≤ D(a, a,) +Dx(x, x,).

The algorithm maintains a set of active strategies in the form of (τ, τx),
where τ is a subtree in the document tree and τx is a subtree in the
context tree. At each round, the active strategies partition the space of
all (document, context) pairs. In each round, a context x arrives, and
one of the active strategies (τ, τx) with con ∈ τx is selected based on
its maximal upper confidence bound. Next, a document a ∈ τ is picked
uniformly at random.

In the case of ranked bandits in metric spaces, the context is pro-
vided by the set of documents S, i.e. documents that the user saw in
higher rank positions but did not click. The MAB algorithm at each
rank position knows the document set S of documents in the upper
positions. For each round, the click probabilities for MAB in a given
rank position are given by µ(· | ZS). The resulting ranked algorithm is
called RankContextZoom.

The RankContextZoom algorithm was tested in simulations using
a document collection of 32000 in a binary ε-exponential tree metric
space with ε = 0.837. The simulation was run over a 5-slot ranked
bandit setting, learning the best 5 documents. In this setting, the
performance of RankEXP3 and RankUCB1 is comparable to picking
documents randomly, which is due to the large size of the dataset and
slow convergence rates of these algorithms, while RankContextZoom
improved the performance substantially.

The problem of diversified ranking has also been approached through
linear submodular functions (Yue and Guestrin, 2011). In this setting,
documents are represented by a set of topics or concepts. The goal is to
recommend documents that do not cover highly overlapping topics. A
set function F maps sets of recommended articles A to real values, e.g.,
the total information covered by A. For each topic i, there is a function
Fi(A) showing how well the recommended document set A covers topic
i. The total utility of recommending A is:

F (A | w) = wTF1(A), . . . , Fi(A),
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where w is a weight parameter vector indicating the user’s interest in
each topic. Thus, F (A | w) corresponds to the weighted information
coverage of A, which varies from user to user. When making recom-
mendations, the aim is to select a set of documents A that maximizes
F (A | w).

This approach is illustrated through a bandit algorithm called LSB-
Greedy. At iteration t, a set of documents A is presented to the user.
Each document a is represented by a set of basis coverage functions
F1, . . . , Fi. The documents are selected for presentation based on their
coverage functions and the previous user feedback, i.e. clicks on a docu-
ment, and the rewards for each recommended document are observed.
At each iteration t, an estimate of wt is calculated via linear regression
based on the previous feedback:

wt = M−1
t Ct,

where M−1
t is the inverse covariance matrix of the submodular features

of the previously selected articles, and Ct is the user’s feedback provided
so far.

The upper confidence bound for each document a is calculated as:

µt + α
√

∆(a | At)M−1
t ∆(a | At),

where µt = wt∆(a | At) is a mean estimate of utility gain from adding
a new document a to the dataset At, and α is the parameter controlling
exploration. The documents with the highest upper confidence bound
are selected for presentation to the user.

The performance of LSBGreedy was compared in simulations to
a number of bandit algorithms using the Yahoo! news dataset. In
terms of average simulated user feedback, LSBGreedy significantly
outperformed the ε-greedy algorithm (Sutton and Barto, 1998) (Section
2.2). LSBGreedy’s performance was comparable to RankLinUCB – an
algorithm obtained through the merger of RBA and LinUCB (Li et al.,
2010a) (Section 6.1.1), which indicates that combining bandits with
submodular functions obtains similar results to contextual bandits.

Hofmann et al. (2011b) and Hofmann et al. (2013b) investigate
mechanisms to balance exploration and exploitation in listwise and
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pairwise learning to rank methods (Liu, 2009). The pairwise approach
takes as input pairs of documents with labels specifying which one
is preferred and then learns a classifier that predicts these labels. In
pairwise learning, training can be performed with implicit feedback in
batches. First, implicit feedback is collected using results of an initial
ranking function. Next, the feedback is collected and the algorithm is
trained. Thus trained system is then evaluated with users. However,
in this approach the documents in the top positions come from the
current best ranking function, which means they are highly likely to
be similar to one another with little diversity. In order to remedy this
problem, Hofmann et al. (2013b) first define two document lists: one
exploratory and one exploitative. These lists are then combined to
balance exploration and exploitation. The exploitative list is generated
according to the scores from a trained ranking algorithm, while the
exploratory list is generated by randomly sampling documents associated
with a query.

The exploration and exploitation is balanced by an ε-greedy style
algorithm (Sutton and Barto, 1998) the difference being that while
in ε-greedy only a single action is selected in each round, in the on-
line approach to pairwise learning multiple actions are selected and
presented at the same time. The relative number of documents from
the exploratory and exploitative lists varies depending on the value
of ε ∈ [0, 1]. For each rank, a document from the exploitative list is
selected with probability 1− ε and a document from the exploratory
list is selected with probability ε. The higher the values of ε, the more
exploratory the combined list is. With ε = 0, the resultant list of
documents is purely exploitative.

Listwise approaches aim to optimize an evaluation measure that
takes into consideration an entire document list. The exploration –
exploitation balance in this approach is introduced through the dueling
bandit algorithm (Yue and Joachims, 2009) (Section 5.1), which requires
only relative evaluation of the quality of two document lists through
implicit feedback. In this approach, there is a method f(list1, list2) for
comparing two document lists. At each round t, the algorithm observes a
query, based on which two document lists are produced: one exploitative
and one exploratory. The exploitative list is produced using the current
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exploitative weight vector wt, which had the best performance so far.
The exploratory list is produced using an exploratory weight vector w,t
generated by moving wt in a random direction by a pre-defined step of
size σ. The two lists are then compared using the function f(list1, list2).
If the exploratory weight vector w,t is considered to provide the better
ranking compared to the current exploitative weight vector wt, then wt
is updated by moving it towards w,t by step size α.

The particular comparison function is inspired by the balanced
interleave method (He et al., 2009), which constructs an interleaved
result list by randomly selecting a starting list and then interleaving
the two lists. After observing user clicks on the result list, a preference
between the two lists is inferred based on the number of clicks that
its top K results received. The proposed interleave function is more
probabilistic in nature by randomly selecting the list to contribute the
document at each rank of the result list. The parameter α controls the
exploration rate affecting the selection of the exploratory list, i.e. the
higher the value of α, the more exploratory documents there will be
in the combined list. For each rank of the result list to be filled, the
algorithm picks one of the two lists and the highest ranked document
that is not yet in the combined result list, is added at this rank. The
result list is displayed to the user. For each clicked document, a click is
attributed to one of the contributing lists.

The two pairwise and listwise approaches for incorporating the
exploration – exploitation trade-off in learning to rank were tested
extensively on two standard collections for learning to rank: LETOR
3.0 and LETOR 4.0 (Liu et al., 2007) using the Dependent Click Model
(Section 3.2). Overall, in pairwise learning when the feedback is noisy,
increasing exploration rate improves online performance of the approach,
with the best performance achieved when result lists contain about one
half exploratory and one half exploitative documents. When feedback is
reliable, online performance is best in a purely exploitative setting. In
listwise learning, balancing exploration and exploitation can significantly
improve online performance over a purely exploratory algorithm – best
performance is achieved with low level of exploration, resulting on
average in only two documents from the exploratory list.
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In the formulation of learning to rank with exploration and exploita-
tion proposed by Vorobev et al. (2015), each unique query is associate
with a dedicated bandit algorithm. Each document related to the query
is treated as an arm. At each step, as a response to the issued query
the algorithm generates a search result page (SERP) and observes the
user’s response. User’s satisfaction with a document translates into a
reward of 1 for the corresponding arm, where satisfaction is defined as
a click with a long enough dwell time or the last click on the SERP. An
arm is considered to be pulled only if the user examined the snippet of
the corresponding document. The cumulative reward over the first K
query issues equals the cumulative number of satisfied clicks.

In this approach, the bandit algorithm is assumed to work for each
query independently. The number of documents considered by each
bandit (corresponding to a query) is quite small and is chosen for
exploration on the basis of prior feedback and general knowledge about
the query and the user. In order to create a list of documents to present
to the user, the documents with the highest upper confidence bound are
used to fill the top k positions in the result list. There are several ways
to balance the exploration and exploitation in this approach. First, a
ranking obtained from any learning to rank algorithm can be combined
with prior distributions of upper confidence bounds for a given bandit
algorithm. Then, the bandit algorithm starts from the performance of the
learning to rank algorithm and improves over iterations according to the
collected information. Second, the user behavior features participating
in the learning to rank model can be periodically updated by making
use of clicks gathered by the bandit algorithm. Third, query-document
features can be used to propagate this information over other documents
or queries.

The approach was tested with collected logs of live stream of search
queries submitted to Yandex during a two-week period using UCB1
(Auer et al., 2002a) (Section 2.2) and Thompson sampling (Chapelle
and Li, 2011) (Section 2.2.1). Both algorithms increase the performance
of the search system in terms of cumulative clicks over a 10 day period
compared to the currently used baseline in the search system. In general,
utilizing prior information from the current production system as well
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as increasing the level of exploration greatly increases the cumulative
performance of the proposed approach.

4.2 Off-line Policy Evaluation

Optimizing an interactive search system can be challenging due to
the lack of appropriately labelled, idiosyncratic personal preferences of
users, and complexities of search engines, where one change in a small
component of the system can have a major impact on the ranked results.
Initial studies of this problem concentrated on theoretical analysis of
how to find an optimal bandit policy off-line using a set of existing
data. Exploration scavenging2 (Langford et al., 2008) examines the
problem of evaluating a policy in the contextual bandit setting using
only observations collected during the execution of another policy and
provide theoretical results for a principled method for policy evaluation
as long as the exploration policy chooses arms independent of side
information and each action is explored sufficiently often. In a similar
vein, Strehl et al. (2010) theoretically evaluate a method for solving the
warm start problem for exploration from logged data in the contextual
bandit setting. The approach is based on propensity score (Horvitz and
Thompson, 1952), which allows for importance weighting of the bias
and estimation based on the previously gathered data.

These theoretical analyses gave rise to a number of studies of off-
line policy evaluation in an IR setting. An unbiased offline evaluator
proposed by Li et al. (2011b) takes as input a bandit algorithm i and a
desired number of valid events on which to base the evaluation. The
method steps through the stream of logged events one by one. If, given
the current history Ht−1, the policy πi chooses the same arm as the one
selected by the logging policy, then the event is added to the history,
and the total payoff of policy pii updated. If, however, the policy πi
selects a different arm from the one taken by the logging policy, then
the event is entirely ignored, and the algorithm proceeds to the next
event without any change in its state.

2See also Section 7.3 for application of Exploration scavenging to web-page layout
optimization with bandits.
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The offline evaluation method was applied to a large-scale, real-world
problem with variable arm sets, i.e. news recommendation on Yahoo!
front page Today module. The offline method was used with three bandit
algorithms: ε-greedy (Sutton and Barto, 1998), UCB (Auer, 2002) and
LinUCB (Li et al., 2010a). CTR estimates for the three algorithms show
that the evaluation results are highly consistent across different random
runs with small variance.

The method was further developed with the aim of inferring the
average reward ρ(π) if policy π is used to choose actions in the bandit
problem (Li et al., 2015). The approach relies on randomized data
collection. At each round t, the environment chooses a context x and
reward ρ for each action (arm) a from some unknown distribution
and only reveals the context. Based on the context, a multinomial
distribution is computed over the actions A. A random action a is drawn
according to the distribution, and the corresponding reward ρa and
probability pa are logged. This process produces a set of exploration
data in the form (x, a, ρa, pa). The exploration data can be used to
evaluate the value of an arbitrary policy π offline using the following
estimator:

ρ̂offline(π) =
∑

x,a,ρa,pa

ρa · S(π(x) = a)
pa

,

where S(c) is the set-indicator function that evaluates to 1 if condition
c holds true, and 0 otherwise. This estimator is unbiased for any π,
provided that every component p in the probability distribution is
nonzero, which allows randomize action selection.

When comparing the offline estimates of two policies π, it is necessary
to obtain reliable confidence intervals to assess whether the difference
in the point estimates by the above equation are significant. First,
from the exploration dataset D, the unbiased estimate of the standard
deviation σ̂ of the random variable ρa·S(π(x)=a)

pa
is computed. Then, a

95% confidence interval is constructed. Such an approximation works
well when the size of D is large and the ratios ρa/pa are bounded.

Li et al. (2015) provide a detailed analysis of using the above ap-
proach to optimize speller – a crucial component in a commercial search
engine. It enables the translation of queries with typing errors into their
correct forms so that the search engine can match and rank relevant
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results. The focus of their analysis is to train a model that selects a
subset of candidates with corrected spelling for a misspelt input query.
The goal of selecting multiple query candidates is to mitigate the risk
of proposing an inappropriate correction for a given context or user.

Jie et al. (2013) propose a unified framework based on contextual
bandit for the search federation problem, i.e. merging the vertical results,
such as images, news, shopping, etc., with the web documents to show
to the user. Given a query, the system predicts the expected reward
for each vertical taking into consideration implicit user feedback, then
organizes the SERP to maximize the total reward. Click-skip based
reward, which assumes a cascade model of user behavior (Craswell
et al., 2008) (Section 3.1), is the proxy for user satisfaction and reward
calculation.

The system has runtime and offline components. When a query
comes to the search engine, it is sent to the federation layer to gather
results from various backends responsible for different verticals. Based
on the ε-greedy algorithm (Sutton and Barto, 1998) (Section 2.2), the
layer decides whether to perform exploration on the query. If exploration
is chosen, the verticals are slotted randomly and the features along with
the context are logged.

In the exploitation mode, based on the predicted rewards of the
verticals and the web documents, the algorithm starts from the top of
the page, and decides the vertical to be slotted at each allowed position
subject to business constrains. For each position, the vertical with the
highest expected reward is selected and it is slotted there as long as its
expected reward is higher than that of the web document intended for
the same slot. Offline, the logs are aggregated and processed to compute
the rewards for each of the events of interest (Li et al., 2010a). Based
on that, model(s) are trained and evaluated. The best model is used in
the runtime system. When deployed in Yahoo!, the system significantly
increased CTR.
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4.3 Query Auto-completion and Recommendation

In information retrieval, query auto-completion (QAC) refers to the
following functionality: given a prefix consisting of a number of charac-
ters entered into a search box, the user interface proposes alternative
ways of extending the prefix to a full query (Cai and De Rijke, 2016).
Ranking query completions is a challenging task due to the limited
length of prefixes entered by users, the large volume of possible query
completions matching a prefix, and the broad range of possible search
intents. In this section, we describe how bandits algorithms can be
applied to query auto-completion.

Durand et al. (2017) tackle the QAC problem using a mixture of
engines. At time t, a list of K auto-completion suggestions is displayed
to the user according to the current query prefix. User satisfaction with
a given query is measured through user clicks. The aim is to assign an
engine to each slot of the QAC list such that this engine is responsible
for providing the query suggestion displayed in this slot. Two approaches
are proposed to select the engine to use for each rank position: the
ranked model based on the ranked bandits algorithm (Radlinski et al.,
2008a) (Section 4.1) with one bandit algorithm for each slot, and the
cascade model, based on the cascade bandits algorithm (Kveton et al.,
2015a) (Section 3.1.1) The ranked model does not share information
obtained from feedback on the same engine placed in different slots.
The cascade model for query recommendation uses a single bandit
algorithm for the whole setting and it merges all information obtained
for a given engine so far irrespective for which slot it was used. These
approaches were employed to learn a mixture of four real engines for
filling 5 positions of a QAC field using three real datasets built by taking
full length queries performed on websites over a one month period. The
cascade model manage to gather 5% more clicks than the ranked model.

Exploitative Ranked Bandits Algorithm (ERBA) (Wang et al.,
2017b) is another algorithm for QAC based on ranked bandits (Radlin-
ski et al., 2008a). While ERBA is an exploitative counterpart of ranked
bandits, i.e. ERBA chooses the next best arm upon conflicts, the ranked
bandit algorithm chooses an arbitrary arm, which is a purely exploratory
approach. Thus, if the recommended query has already been selected at
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rank k, ERBA selects the second query as the next best arm excluding
the presented arms according to some criteria of the particular bandit
algorithm used to make a query suggestion at a given rank. To utilize
prior knowledge from query logs, Thompson Sampling (Chapelle and
Li, 2011) (Section 2.2.1) is used to select a query suggestion at each
position. Experimental results with Yahoo! search query logs show that
Thompson sampling ERBA substantially outperforms UCB1 ranked
bandits in terms of CTR for different lengths of queries.

A modified version of Thompson sampling (Chapelle and Li, 2011)
has also been applied to query recommendation (Hsieh et al., 2015). The
proposed algorithm makes a simplifying assumption that the engagement
rate on a specific search suggestion is independent of the other K − 1
suggestions present, which is necessary to accommodate multiple query
suggestions per request. This assumption allows the reduction of the
size of the action space. Based on observations of different search
scenarios in practice, two additional modifications were made. First,
the F parameter in the Beta distribution indicating the number of
failures is updated by 1

K−1 instead of 1. In this way, “one” failure (but
not K − 1 failures) is assigned if one success is conferred to some arm
at each round, and the failure is shared by all the remaining arms.
This helps to prevent potential under-exploration that might occur as
a result of the independence assumptions. Second, a rate parameter
γ, to accommodate the ignorance of not observing a user action, was
introduced. Intuitively, γ is a scale factor to control the rate at which
the posterior uncertainty decreases when no user decision is spotted. For
example, at γ = K, the algorithm sees no-response as dissatisfaction.

Li et al. (2016a) address the issue of the user’s complex information
needs. In a majority of retrieval systems, a single active query is used
to retrieve relevant documents. When the user’s information need has
multiple aspects, the query must represent the union of these aspects.
The solution is to keep multiple, simpler queries active and, based on
the user’s feedback, these queries take turns to retrieve documents. The
number of relevant documents, treated as rewards and obtained from
past result pages of each query, indicates which query to explore next.
The approach is based on UCB bandits with a sliding window (Garivier
and Moulines, 2011), which considers only the last i plays. In many
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cases, however, the subtopics of the information need of the user are not
defined upfront and gradually change during the search process. New
queries can be generated through an interactive retrieval process, for
example through relevance feedback, and added to the bandit algorithm
used to retrieve the initial search results. An algorithm inspired by
Monte Carlo tree search (Srinivasan et al., 2015) is proposed, where
the UCB score of a new query is estimated by its similarity to existing
queries in the pool. The similarity is calculated using a bag of words
representation of queries and Gaussian Process kernel (see Section 6.1
for more details). For a new query in, a new arm n is introduced and
its UCB score is estimated as:

UCBn(t) = R̂n(t)
N̂n(t)

+ c

√√√√ log min(t, τ) + N̂n(t)
N̂n(t)

,

where R̂n(t) is the estimate sum of rewards of the n-th arm in the last τ
rounds, N̂n(t) is the estimated number of times arm n has been played
in the first t rounds and c is a constant controlling the tendency to
explore the new arm.

4.4 Summary

While Chapter 3 describes a number of new bandit algorithms inspired
by click models developed in IR, this chapter focuses on specific appli-
cations of bandits in IR (e.g. query auto-completion). The case studies
and applications discussed above again show the dichotomy between
independent multi-armed bandits, such as UCB1, and contextual or
Bayesian bandits, such as Thompson sampling. For example, initial im-
plementations of the ranked bandit algorithms based on UCB, although
easy to implement, do not scale to large datasets and perform much
worse than later implementations based on contextual bandits, which
also scale up to larger datasets. Thompson sampling, or its various
modifications, seems to be the algorithm of choice for many applications
– it is easy and quick to implement and at the same time it allows to
incorporate prior knowledge about the user or the system, which greatly
speeds up the learning process.
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Another observation concerns the role of exploration in information
retrieval applications. A number of applications discussed in this chapter
used the ε-greedy algorithm (Sutton and Barto, 1998) or its variants
as their benchmark. Compared to other bandit policies, most notably
UCB and Thompson sampling, ε-greedy is more aggressive in terms
exploitation. In general, ε-greedy tends to underperform in comparison
to simple UCB strategies as well as contextual and Bayesian bandits,
which points to the importance of exploration in many IR applications.
This preference for more exploratory results may be due to the noise in
user response or the search system’s inability to understand the user’s
intent, which may be mitigated through exploration thus giving the
user more varied selection.



5
Ranker Evaluation

Traditional ranker evaluation methods rely on offline metrics, such as
MAP or nDCG (Sanderson, 2010). However, such methods rely on the
existence of test collections, which do not necessarily reflect the needs
of the current user of an IR system. Online evaluation can be performed
using interleaved comparison methods (Hofmann et al., 2013a; Joachims,
2003) and multileaved comparisons (Schuth et al., 2015). This chapter
covers approaches to online ranker evaluation using bandit algorithms
in conjunction with various interleaving methods. The recent increased
interest in online ranker evaluation led to the development of a number
of new bandit algorithms, in particular a new class of algorithms called
dueling bandit algorithms. The majority of this chapter is devoted to
the dueling bandit problem (Section 5.1) and its extension multi-dueling
bandits (Section 5.4). The last section of the chapter discusses the
application of bandits to test collection assessments (Section 5.5).

5.1 Dueling Bandits and Interleave Filtering

In dueling bandits learning happens “on-the-go” through preference
feedback, i.e. from comparisons between a pair of actions (Busa-Fekete
et al., 2018; Sui et al., 2018). This approach makes dueling bandits

346
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well-suited for modeling settings that elicit subjective human feedback
through preference form.

Yue and Joachims (2009) proposed an online learning framework
for real-time learning from observed user behavior. The approach only
requires pairwise comparisons that can be inferred from implicit feed-
back. In the dueling bandits problem1 the only actions are comparisons
(or duels) between two points within a space X (e.g., a parameterized
space of retrieval functions in a search engine). Any single comparison
between two points x and x′ (e.g., individual retrieval functions) is
determined independently of all other comparisons with probability

P (x � x′) = 1
2 + ε(x, x′),

where (x, x′) ∈ [−1/2, 1/2]. In the search example, P (x � x′) refers to
the fraction of users who prefer the results produced by x over those of x′.
The measure ε(x, x′) can be regarded as the distinguishability between
x and x′. Algorithms can then learn only via observing comparison
results, e.g. interleaving (Radlinski et al., 2008b).

The following regret formulation is used to quantify the performance
of an on-line algorithm:

R =
T∑
t=1

ε(x?, xt) + ε(x?, x,t),

where xt and x,t are the two points selected at time t and x? is the best
point known only in hindsight. The regret corresponds to the fraction of
users who would prefer the best retrieval function x? over the selected
ones xt and x,t.

Yue and Joachims (2009) implemented the dueling bandit prob-
lem through the Dueling Bandit Gradient Descent (DBGD) algorithm.
DBGD maintains a candidate xt and compares it with a neighboring
point x,t along a random direction. If x,t wins the comparison, then an
update is taken along that direction, and then projected back into the

1See Busa-Fekete et al. (2014) for an approach to PAC rank elicitation similar
to dueling bandits. The method consists of sorting a given set of options based on
adaptive sampling of stochastic pairwise preferences. For theoretical analysis on
reducing the dueling bandit problem to a stochastic MAB (see Ailon et al., 2014).
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spaceX. DBGD requires two parameters which can be interpreted as the
exploration σ and exploitation α step sizes. The α parameter is required
for the gradient descent algorithms used in DBGD. Since DBGD probes
for descent directions randomly, this introduces a gradient estimation
error that depends on the parameter σ.

The dueling bandit gave rise to a number of algorithms that can
be applied in ranking optimization. Interleaved Filter (IF) (Yue et al.,
2012a) is an exploration algorithm that aims to selected the optimal
bandit2. It maintains a candidate bandit b̂ and, through simulations,
compares b̂ with all other remaining bandits via round robin scheduling
(i.e., interleaving). Any bandit that is empirically inferior to b̂ with
1−σ confidence is removed. The value of σ is calculated as σ = 1/TK2,
where T indicates the number of iterations and K is the number of
bandits in the dataset. When a bandit b is empirically superior to b̂ with
1− σ confidence, then b̂ is removed and b becomes the new candidate b̂.
Afterwards, all empirically inferior bandits are removed. This process is
repeated until only one bandit remains, which is the best bandit.

In later work, Yue and Joachims (2011) extend the dueling bandits
problem to a relaxed setting where preference magnitudes can violate
transitivity. The approach is called Beat-the-Mean. The assumption in
the original setting of the dueling bandit problem (Yue et al., 2012a) was
that user preferences satisfy strong transitivity. For example, if there
are three strategies A, B and C and users prefer A to B by 55%, and B
to C by 60%, then by strong transitivity, users will prefer A to C at least
60%. However, results from experimental interleaving show that strong
transitivity is often violated in practice. Furthermore, on top of weak
transitivity, Yue and Joachims (2011) made the additional assumption
of triangular inequality, such that for any triplet of bandits b1 � bj � bk,
the distinguishability of bandit pairs is ε(b1, bk) ≤ ε(b1, bj) + ε(bj , bk).
This assumption can be viewed as a diminishing returns property.

Beat-the-Mean proceeds in a sequence of rounds and maintains a
working set Wt of active bandits during each round t. For each active
bandit bi ∈ Wt an estimate is maintained for how often bi beats the

2See Urvoy et al. (2013) for a generalization of dueling bandits for situations
where the environment parameters reflect the idiosyncratic preferences of a mixed
crowd.
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mean bandit b̄t of Wt, where comparing bi to b̄t is functionally identical
to comparing bi with a bandit sampled uniformly from Wt. In each
iteration, a bandit with the fewest recorded comparisons is compared
with b̄t. The iteration ends when a bandit b′ is separated from the best
one by a sufficient confidence margin. All the comparisons involving
b
′ are removed, and b′ is removed from Wt. The algorithm terminates
when only one active bandit remains.

Beat-the-Mean algorithm was compared in simulations against the
Interleave Filter (Yue et al., 2012a). In a setting where strong tran-
sitivity holds, the average regret of both methods increases linearly
with the number of bandits considered, however, the regret of Inter-
leave Filter shows much higher variance. In a setting where stochastic
preferences only satisfy relaxed transitivity, similar behavior can be
observed, however, Interleave Filter suffers from super-linear regret
with significantly higher variance. This indicates that, compared to
Beat-the-Mean, Interleave Filter is not very robust when transitivity is
relaxed.

Dudık et al. (2015) consider the problem of learning in the dueling
bandit setting using contextual information. The approach is rooted
in a game theoretic concept of von Neumann winner – a randomized
policy that beats or ties every other policy and does not require strong,
and often unrealistic, assumptions found in previous dueling bandit
approaches. In the relative feedback setting of dueling bandits, it is
often difficult to determine what the overall best action (arm) is as
there is no measure of the absolute quality of actions. Through relaxing
the assumption that there is a single action (arm) that can beat all
the others, it is easier to find a good solution to the dueling bandit
problem. The idea is to find a probability vector w in ∆K, where ∆K
is the simplex of vectors in [0, 1]K whose entries sum to 1, such that∑K
i=1w(i)P (i, j) ≥ 0 for all arms j, where P (i, j) is the expectation of

arm i to beat arm j, which itself is an entry in a preference matrix P .
Thus, for every arm j, if i is selected randomly according to distribution
w, the chance of beating j in a duel is at least 1/2. A distribution w
with this property is called a von Neumann winner for the preference
matrix P .
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In order to incorporate context into this scenario, it can be assumed
that at each round t, a context ct and preference matrix Pt are chosen by
Nature. The context is revealed to the learner but the preference matrix
remains hidden. Based on the context ct, then the learner selects two
arms for a duel, however, the expectation of the outcome is determined
by the (hidden) preference matrix. The goal is to learn which action
to select as a function of the context, i.e. to learn the mapping π from
contexts to arms. This allows the extension of von Neumann winner to
incorporate context by reducing it to the non-contextual setting. Each
mapping π can be regarded as a meta-arm and a preference matrix can
be defined over these meta-arms. Thus, von Neumann winner in the
contextual setting can be defined as an (ordinary) von Neumann winner
for the meta-preference matrix with mappings. Detailed studies on how
to compute (or approximate) contextual von Neumann winners can be
found in Dudık et al. (2015).

5.2 Condorcet Winner

As mentioned earlier, in dueling bandits at each time-step, two rankers
(i, j) are compared and with some probability ranker i beats ranker j,
with preference probabilities stored in matrix P = [pi,j ]. A Condorcet
winner (Urvoy et al., 2013) is a ranker rank1 such that p1,i >

1
2 for

all i > 1, i.e. when interleaved with any other ranker, the Condorcet
winner is expected to win. In this section, we describe a number of
related algorithms that select rankers to compare by first choosing a
ranker that might be a good candidate for the Condorcet winner, while
the second selected ranker is a candidate that has the best chance of
disproving the hypothesis that the first ranker is the Condorcet winner.

Zoghi et al. (2014b) extends the Upper Confidence Bound (UCB)
algorithm (Auer et al., 2002a) to the K-armed dueling bandit setting
(Yue et al., 2012a). The approach uses estimates of the pairwise proba-
bilities to select a promising arm and applies UCB with the winner as a
benchmark. The Relative Upper Confidence Bound (RUCB) is the imple-
mentation of this approach. While previous dueling bandit algorithms,
such Interleave Filter (IF) (Yue et al., 2012a) and Beat-the-Mean (BTM)
(Yue and Joachims, 2011) (Section 5.1) use the exploration horizon to
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set their internal parameters so that for each t, there is a separate
algorithm IFt or BTMt, RUCB does not require the specification of
the horizon as input. This makes RUCB more practical in application
because it is difficult to know in advance how to set the horizon: if
the horizon is set too long, the algorithm is too exploratory and takes
longer to find the best arm, and if it is too short, the algorithm may
fail to find the best arm before the horizon is reached.

The RUCB algorithm can be described as follows. In each time
step t, RUCB goes through three stages. First, all the arms are placed
in a pool of potential champions. Then, each arm is compared against
all other arms optimistically and the upper confidence bound is com-
puted: Ut(ij) = µt(ij) + ct(ij), where µt(ij) where is an estimation
of the number of times arm i beats arm j at time t, and ct(ij) is an
optimism bonus that increases with t and decreases with the number
of comparisons between i and j. In the case of Ut(ii), its value is set
to 1

2 . If Ut(ij) <
1
2 for any j, then arm i is removed from the pool. If

there is a single potential champion left at the end of this process, then
this arm is put in the set B of the hypothesized best arm. The set B is
either empty or contains only one arm. An arm is removed from B if it
loses to another arm. Next, from the remaining potential champions,
a champion arm is selected by sampling uniformly at random if B is
empty; and if B is not empty, the probability of picking the arm in
B is set to 1

2 , while the remaining arms are given equal probability of
being chosen. In the second stage, regular UCB is performed on the
set of arms a1,c . . . aK,c, where ac indicates the current reference arm.
The arm aj = arg maxj Ut(jc) is selected. In the third stage, the pair
of arms (ac, aj) is compared and their similarity scores are updated.

RUCB was compared to Beat-the-Mean bandit algorithm in ranker
evaluation using the interleaved comparison (Radlinski et al., 2008b).
In this setting, documents proposed by two different ranking functions
are interleaved and the resultant list is presented to the user. The user’s
clicks are then used to infer noisy preferences for one of the ranking
functions, which can be modelled as a k-armed dueling bandit problem
with each arm corresponding to a ranking function. The data used for
the experiment consisted of randomly chosen subsets from the pool
of 64 ranking functions provided by LETOR, a standard IR dataset,
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yielding k-armed dueling bandit problems with k ∈ {16, 32, 64}. In all
the experiments, RUCB accumulates the least regret, while the regret
of Beat-the-Mean grows linearly with time.

The Relative Minimum Empirical Divergence (RMED) algorithm
(Komiyama et al., 2015) improves upon the theoretical results for RUCB.
For each arm, the algorithm computes the empirical divergence defined
as

Ii(t) =
∑

j|pi,j<1/2
d(p̂i,j(t), 1/2)Ni,j(t),

where p̂i,j(t) is the algorithm’s empirical estimate of the preference
probability pi,j at time t, and Ni,j(t) is the number of comparisons
between arm i and any arm j that beats i in the first t time-steps, while
d(p, q) is the KL-divergence between two Bernoulli distributions with
parameters p and q. The likelihood that arm i is a Condorcet winner
is exp(−Ii(t)) and it is used to pick the arms that will be compared
against each other at time t+ 1.

Simulation results in a setting similar to the one used for testing
RUCB (Zoghi et al., 2014b) described above in this section show that
RMED significantly outperforms RUCB and similar dueling bandit
algorithms in terms of regret accumulation.

Relative Confidence Sampling (RCS) (Zoghi et al., 2014a) is an
algorithm related to RUCB. It differs from RUCB in one crucial respect:
the use of sampling when conducting a round robin tournament to select
a champion arm. The intuition behind this change is that improved
performance can be obtained by maintaining posterior distributions
over the expected value of each arm and sampling from those posteriors
to determine which arm to select. Sampling based methods, which rely
on posteriors, do not easily gravitate toward the extremes thus leading
to the selection of more appropriate arms.

The RCS algorithm takes as input a set of ranking functions (rankers)
and an oracle, e.g. an interleaved comparison method that returns a
noisy estimate of which ranker is the winner. RCS has one parameter α,
which controls the exploration rate of the algorithm: the higher the value
of α, the longer it takes to settle on a single ranker. RCS also maintains a
scoresheet where all the comparisons are stored. The algorithm proceeds
in two phases. In phase one, a tournament is simulated based on the
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current scoresheet, i.e., samples θij are collected for each pair of rankers
(i, j) with i > j from the posterior Beta distribution. RCS sets θji =
1−θij and θii = 1

2 . Ranker i beats ranker j in the simulated tournament
if θij > 1

2 There are two ways in which a champion ranker could be
selected. In the first scenario, the champion ranker is the ranker that
beats all other rankers in this tournament. If no ranker beats all other
rankers, then the champion ranker is the one that has been the champion
least often. After a number of iterations, enough inferior rankers will be
eliminated for the algorithm to always select the best option. The second
stage of the algorithm is similar to RUCB (Zoghi et al., 2014b) described
above in this section, i.e. the UCB is calculated for all the arms with the
current champion as reference and using the same formula as RUCB.
RCS picks the ranker with the highest UCB. Finally, the champion
ranker and the ranker with the highest UCB are compared against each
other using a real interleaved comparison and the scoresheet is updated
accordingly.

The RCS algorithm was compared against RUCB using two large-
scale learning to rank datasets: the Microsoft Learning to Rank dataset
and the Yahoo! Learning to Rank Challenge dataset. Probabilistic
interleave (Hofmann et al., 2011a) was used to compare a pair of
rankers and a probabilistic user model (Craswell et al., 2008) was used
to model the user’s click behaviour. RCS accumulates on average a
third less regret than RUCB, i.e. RCS finds the best ranker faster and
makes less severe errors compared to RUCB.

Although RUCB and RCS outperform earlier dueling bandit algo-
rithms, such as Interleave Filter (Yue et al., 2012a) and Beat-the-Mean
(Yue and Joachims, 2011) (Section 5.1), they have difficulty scaling
to large K. Interleave Filter and Beat-the-Mean make additional as-
sumptions to facilitate the identification of the best ranker, however,
these assumptions may be too restrictive for specific applications, such
as web search. mergeRUCB (Zoghi et al., 2015b) is an algorithm that
bridges the gap between these two approaches: it makes only weak as-
sumptions about the k-armed dueling bandit problem but requires only
O(K) comparisons and therefore performs well when many rankers need
to be compared. mergeUCB groups rankers into small batches, which
reduces the number of comparisons before rankers can be eliminated.
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When comparing different rankers, one comparison may often not be
enough to determine which of a pair of rankers is better since feedback
is stochastic. The number of required comparisons may be even larger
if two rankers are similar and it is difficult to distinguish between them.
This case is problematic because both rankers might be weak in the
overall pool of rankers and comparing them to each other multiple times
will increase the regret. In mergeRUCB, the best ranker in the batch is
used to eliminate the rest. If a batch contains only similar rankers and
is slow in eliminating rankers, it is combined with other more varied
batches.

Similarly to RUCB, mergeRUCB proceeds in stages. Before the first
stage, the rankers are grouped into small batches Bi. Within each stage,
interleaved comparisons are performed among rankers from the same
batch. At any given time, the choice of rankers to compare against
each other, and to eliminate throughout the process, is determined by
their UCBs, which are calculated in the same manner as in RUCB
(Zoghi et al., 2014b) described above. The algorithm proceeds until the
number of remaining rankers becomes small. At this point, the stage is
concluded and by pairs of batches are merged together to form bigger
batches. This initiates the next stage, and the process repeats until a
single ranker remains.

MergeRUCB was compared against RUCB and Beat-the-Mean using
four large-scale learning to rank datasets: the Microsoft Learning to
Rank dataset, the Yandex Internet Mathematics 2009 dataset and
two of the Yahoo! Learning to Rank Challenge datasets. Probabilistic
interleave (Hofmann et al., 2011a) was used to compare a pair of rankers
and a probabilistic user model (Craswell et al., 2008) was used to model
the user’s click behaviour. The experiments show that, as the number of
rankers increases (going from 136 to 245 to 700), so does the difference
between the performance of mergeRUCB and the remaining algorithms,
i.e. the higher the number of arms, the higher the difference in regret
between the three algorithms, with the regret of mergeRUCB being the
lowest.
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5.3 Copeland Dueling Bandits

Copeland Dueling Bandits (Zoghi et al., 2015a) is another extension of
the k-armed dueling bandit problem. While RUCB (Zoghi et al., 2014b)
(Section 5.2) and its derivatives makes the assumption that there is
an arm that beats every other arm with probability greater than 1/2,
Copeland Dueling Bandits relax this assumption and instead focus on
finding Copeland winners, i.e. arms that beat the greatest number of
other arms.

Two algorithms are proposed for the Copeland setting: the Copeland
Confidence Bound (CCB) and Scalable Copeland Bandits (SCB). CCB
is inspired by RUCB (Zoghi et al., 2014b) and is based on the prin-
ciple of optimism followed by pessimism. It maintains optimistic and
pessimistic estimates of the preference matrix, where the optimistic
preference matrix is used to select the potential winner and the pes-
simistic preference matrix is used to select an opponent. The opponent
is an arm considered likely to discredit the hypothesis that the arm
selected from the optimistic preference matrix is indeed a winner. The
optimistic estimate of the score of each arm is calculated based on its
past performance, i.e. how a given arm fared as an optimistic winner
throughout history. The “short-listed” possible winners are placed in set
Bt. To maintain Bt, when the optimistic score of an arm is lower than
the pessimistic score of another arm, the arm is removed from Bt. The
opponent arm is selected based on its confidence interval maintained by
the preferences matrices for each arm ai and aj . In relation to a given
arm ac, there are three types of arms: (1) arms aj with the confidence
region strictly above 0.5, (2) arms aj with the confidence region strictly
below 0.5, and (3) arms aj where the confidence region contains 0.5.
An arm of type (1) or (2) may become an arm of type (3) as the size of
the confidence intervals increases as time goes on. CCB always chooses
a winner from arms of type (3) as they are the most informative about
the optimistic score of arm ac. The favoured arms of type (3) are the
ones that confidently managed to beat arm ac in the past i.e., arms
that in some past round were of type (2). Such arms are maintained in
a shortlist of “formidable” opponents Bit that are likely to confirm that
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ai is not a winner. The sets Bit speed up the elimination of suboptimal
winners.

The SCB algorithm is designed to handle dueling bandit problems
with large numbers of arms. It relies on a reduction to a k-armed
bandit problem with direct access to a noisy version of the score of
arm ai, which is obtained by comparing ai to a random arm aj until it
becomes clear which arm beats the other. A KL-divergence based arm
elimination algorithm (Garivier and Cappé, 2011) is used to implement
an elimination tournament with confidence regions based on the KL-
divergence between probability distributions. Combining this approach
with the squaring trick greatly reduces the number of partitions required
for comparing different arms. SCB repeatedly compares arm ai to other
arms but force-terminates if an increasing threshold is reached. If it
terminates early, then the identified arm is played against itself until
the threshold is reached.

CCB and SCB were compared to RUCB in the setting of ranker
evaluation described in more detail in Section 5.2 above and in (Zoghi
et al., 2014b). RUCB’s regret grows linearly, while that of CCB and
SCB flattens out as the number of iterations increase. In general, the
regret of CCB is about 3/4 lower compared to SCB.

The Copeland Winners Relative Minimum Empirical Divergence
(CW-RMED) algorithm (Komiyama et al., 2016) also exploits the struc-
ture of the Copeland dueling bandit problem. Compared to CCB al-
gorithm discussed above, it requires less exploration to find winner
arms.

At the beginning of each round t, CW-RMED checks if there exists
a pair of arms i, j that has not been drawn O(log t) times or if p̂i,j(t) –
the estimate of preference probability pi,j at time t – is very close to
1/2. If one of these conditions is met, then the algorithm immediately
draws that pair. Otherwise, it enters the loop that sequentially draws
each pair from the sets of superiors of arm i, i.e. the set of arms that
beat arm i. If the observation is sufficient to identify an arm as a
Copeland winner, it exploits by adding it to the candidates of the pairs
that will be drawn in the next loop. Otherwise, it draws the pairs
with the number of observations below the minimum requirement for
identifying arm i as a winner with high confidence. A computationally
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more efficient version of CW-RMED called ECW-RMED reduces the
amount of exploration even further. In experimental results with the
Microsoft Learning to Rank dataset in a setting similar to the one used
in Zoghi et al. (2014b), ECW-RMED significantly outperformed CCB
in terms regret accumulation.

Thompson sampling (Section 1) has also been applied to general
Copeland dueling bandits. The Double Thompson Sampling (D-TS)
algorithm (Wu and Liu, 2016) selects the first and the second candidate
through Thompson sampling. For each pair of arms ai, aj (with i 6= j),
there is a Beta prior distribution for its preference probability pi,j . These
distributions are updated according to the comparison results Bi,j(t−1)
and Bj,i(t− 1), where Bi,j(t− 1) (and Bj,i(t− 1)) indicates the number
of times when arm ai (aj) beats arm aj (ai) up to time t.

At each time t, the algorithm has two phases to select the first and
the second candidate arms. When choosing the first candidate, first the
RUCB (Section 5.2) of pi,j is used to create a set of possible winners by
eliminating the arms that are unlikely to be the Copeland winner. The
algorithm then samples θi,j(t) from the posterior Beta distribution and
the first candidate is selected by majority voting, i.e., the arm within
the set of possible winners that beats the most arms according to θi,j(t)
is selected to be the first candidate. The ties are broken randomly. A
similar procedure is applied to select the second candidate at – new
samples θi,t are generated and the arm with the largest θ selected as
the second candidate.

The D-TS algorithm was tested using the Microsoft Learning to
Rank dataset, with a setting similar to the one described in Zoghi
et al. (2015a) – a preference matrix for 136 rankers is derived, where
each ranker is a function that maps a user’s query to a document
ranking and can be viewed as one arm in dueling bandits. In Condorcet
dueling bandits, D-TS performs much better than existing algorithms,
in particular when compared to RCS (Zoghi et al., 2014a) with respect
to regret. In non-Condorcet dueling bandits, D-TS significantly reduces
the regret compared to the UCB-type algorithms.
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5.4 Multi-dueling Bandits

Early applications of dueling bandit algorithms to ranker evaluation
(Section 5.1) focused on comparing only two rankers at a time. Brost et
al. (2016b) propose a generalization of the dueling bandit problem that
uses simultaneous comparisons of an unrestricted number of rankers.
The multi-dueling bandit algorithm maintains optimistic estimates of
pairwise winning probabilities and plays arms that have a chance of
being the winner. When there is a single candidate, the algorithm plays
only that candidate. When there are multiple candidates, the algorithm
explores by comparing them all. The estimates of pairwise winning
probabilities are based on empirical counts of wins and losses.

The algorithm maintains two types of UCBs. Ut(ij) is the optimistic
estimate of arm ai winning in a tournament with arm aj and it is
analogous to that used in Zoghi et al. (2014b) (Section 5.2):

Ut(ij) = gt(ij)
Nt(ij)

+
√
α ln t
Nt(ij)

,

where Nt(ij) is the number of times up to round t that i and j were
compared with each other, gt(ij) is the number of times that arm i

beat arm j, and the parameter α controls the width of the UCB. An
additional UCB Vt(ij) with wider upper bound is maintained with the
aim of increasing parallel exploration:

Vt(ij) = gt(ij)
Nt(ij)

+
√
βα ln t
Nt(ij)

,

where the parameter β ≥ 1 controls how much wider it is than the
UCB of Ut(ij). When there is more than one candidate for a winner
according to the narrow confidence bounds U , an exploration round
is triggered and arms that could be winner candidates according to
the wide confidence bounds V are compared. In both cases, potential
winners are arms i for which Ut(i) ≥ 1

2 , Vt(i) ≥
1
2 . At each iteration

t, if there is only a single potential winner according to U , then this
arm is selected. If there are several potential winners, then all the arms
Vt(i) ≥ 1

2 are selected for comparison.
The multi-dueling bandit algorithm was compared against RUCB

(Zoghi et al., 2014b) and mergeUCB (Zoghi et al., 2015b) using the
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Microsoft Learning to Rank dataset, the Yandex Internet Mathematics
2009 dataset and two of the Yahoo! Learning to Rank Challenge datasets.
Probabilistic interleave (Hofmann et al., 2011a) was used for RUCB and
mergeUCB, and Sample Only Scored Multileave (Brost et al., 2016a)
was used for multi-dueling bandit. In terms of cumulative regret, multi-
dueling bandit substantially outperforms the two baselines by almost 2
orders of magnitude. Additionally, as the number of rankers increases
the cumulative regret increases for RUCB and mergeRUCB, while it
is almost independent of the number of rankers for the multi-dueling
bandit.

The SelfSparring approach (Sui et al., 2017) reduces the multi-
dueling bandits problem to a conventional bandit setting, which is
similar to the approach to reducing the dueling bandit problem to a
MAB problem (Ailon et al., 2014). SelfSparring uses a stochastic MAB
algorithm to independently sample a set of K arms to duel. A prior
distribution is used to initialize the sampling process. The preference
feedback can be any type of comparisons ranging from full compari-
son over the K arms (a full preference matrix for all pairs) to single
comparison of one pair (just two valid entries in the preference matrix).
After the feedback, the posterior distribution over arms is updated.
Two algorithms to implement SelfSparring are proposed: IndSelfSpar-
ring assumes independent arms and is based on Thompson sampling
(Chapelle and Li, 2011) (Section 2.2.1), while KernelSelfSparring uses
Gaussian processes (Srinivas et al., 2010) (Section 6.1.1) to make pre-
dictions about preference function f based on noisy evaluations over
comparisons.

Following the simulation setting of Brost et al. (2016b) on the MSLR
dataset (described above in this section), IndSelfSparring was compared
against the multi-dueling bandit algorithm. The results, in terms of
cumulative regret, show that IndSelfSparring significantly outperforms
the baseline.

5.5 Pooling Based Evaluation and Bandits

Relevance judgements are used for creating test collections that are later
employed for evaluation of IR tasks and techniques. However, relevance
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judgements are produced by human assessors, which makes them slow
and expensive to collect. For this reason, many test collections are built
through pooling, where only a subset of a given document dataset is
judged for each topic. In this approach, the more relevant documents
are presented to the assessors, the more reliable the evaluation is.

Multi-armed bandits provide a way to model document adjudication
in pooling-based evaluation to ensure that the assessor spends most of
their time assessing relevant documents (Losada et al., 2016). Given
a query and a set of runs, each run can be seen as a bandit arm
that can be played to obtain a document to be judged. The reward is
binary relevance of the document with respect to the query. Playing
an arm means getting the next ranked document from a given run
starting from rank 1. Additionally, the judgement ordering problem is
non-stationary because the quality of the runs changes when moving
down in the rankings and so the probabilities of relevance of the runs
change. However, stationary bandit algorithms may concentrate too
much on runs with old wins, leading to suboptimal solutions. One way
to tackle this problem is to use a weighted average of the past rewards
and the last reward. This can be incorporated into a Bayesian bandit
model, such as Thompson sampling (Chapelle and Li, 2011) (Section
2.2.1). The parameters of the posterior distribution of a given run i

are: α = 1 + jreli and β = 1 + jreti − jreli, where jreli is the number
of judged documents that are relevant and were retrieved by run i,
and jreti is the number of judged documents that were retrieved by
run i. Given the binary relevance of the last document judged, rell,
the parameters of the runs retrieving this document are updated as:
jreli = rate · jreli + rell and jreti = rate · jreti + 1. If rate = 1 this is
the standard method, where all rewards count the same. If rate > 1, the
method gives more weight to early relevant documents and if rate < 1,
more weight is given to the last relevant document found. The best
performing setting was when rate = 0.

The method was compared against stationary Thompson sampling
and MoveToFront (Cormack et al., 1998) – a popular pooling method
based on rank biased precision, using a number of TREC datasets.
The average number of relevant documents found at different number
of judgments performed was the highest in almost all the cases. The
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performance of non-stationary Thompson sampling only started to be
outperformed by other methods when the number of judgments reached
2000. Stationary Bayesian methods and MoveToFront achieved very
similar performance to each other.

5.6 Summary

The main contribution of this chapter is the introduction of the dueling
bandit problem that, in conjunction with various interleave methods,
gave rise to a number of techniques for online ranker evaluation. The
initial dueling bandit problem proposed by Yue and Joachims (2009) was
further developed into numerous algorithms, where some of the initial
assumptions were relaxed or additional information incorporated to cap-
ture more real-life aspects of user’s behaviour in an information retrieval
setting. For example, Beat-the-Mean bandit (Yue and Joachims, 2011)
relaxes the transitivity assumptions related to user’s preferences, while
Copeland Dueling Bandits (Zoghi et al., 2015a) break the assumption
that there exists an arm that beats all the others with probability higher
than 1/2. Other approaches combine game theoretic principles (Dudık
et al., 2015) or UCB algorithms (Zoghi et al., 2014a) with the dueling
bandit mechanism. Further extensions of the dueling bandit problem
include generalizations to an unrestricted number of rankers (Section
5.4). In general, experimental results indicate that often the relaxation
of the theoretical assumptions leads to algorithms that better reflect
real-life user behaviour and produce improved experimental results.



6
Recommendation

This chapter covers the application of bandit algorithms in recommender
systems. Recommender Systems are defined as software tools and tech-
niques that provide suggestions for items that are most likely to be of
interest to a particular user (RicciLior et al., 2001). Bandit algorithms
are a popular method used in recommendation to improve personaliza-
tion (Section 6.1), often through exploiting the graph structure of a
social network (Section 6.2.1) or through the application of collaborative
filtering (Section 6.3). Optimization is another area of the application of
bandit algorithms in recommender systems: faster learning of relevant
features (Section 6.4), detecting changes in user’s interest (Section 6.5)
or enabling feedback to multiple items simultaneously (Section 6.6).

6.1 Personlization and the Cold Start Problem

A crucial aspect of a recommender system is the ability to suggest
relevant items to users based on their background (e.g. age, gender,
level of education) or previous queries/purchased items. In this section,
we provide an overview of the application of contextual bandits in
recommendation (Section 6.1.1) as well as a number of other approaches

362
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used in personalization, such as ranked bandits (Section 6.1.3) and
Thompson sampling (Section 2.2.1).

6.1.1 Contextual Bandits

The query-ad-clustering algorithm (Lu et al., 2009) is a version of a
contextual multi-armed bandit where the context comes from a metric
space. The algorithm proceeds in phases i = 0, 1, 2, . . . consisting of
2i rounds each. At the beginning of a phase, the algorithm partitions
the query space S into disjoint sets (clusters) S1, S2, . . . , Sn each of
diameter diam at most diam = 2 − i

j,+z, and n = c · 2 j,i
j,+z, , where j,

and z, are the covering dimensions of S and c is a constant to ensure
that the covering numbers of S are bounded. In each round t of the
current phase i, when a query qt is received, the algorithm determines
the cluster Sf of the partition to which qt belongs. Cluster Sf is fixed in
the following way. For each ad, find how many times that ad has been
displayed for a query from the set Sf during the current phase up to
round t and calculate the corresponding empirical average payoff µt of
that ad. In round t, the algorithm displays the ad that maximizes the
upper confidence index µt−1(ad)+Radt−1(ad), where Radt =

√
4i

1+nt(ad)
is the confidence radius.

However, in many web-based scenarios, the content and its pop-
ularity frequently change. Additionally, there are new users with no
historical consumption record whatsoever, which makes personalized
recommendation more difficult (the so called cold start problem). Con-
textual bandits allow a system to balance the two competing goals:
maximizing user satisfaction in the long run, and gathering information
about goodness of match between user interests and content. LinUCB
(Li et al., 2010a) is a contextual bandit problem that sequentially se-
lects articles to serve users based on contextual information of the user
and articles, while simultaneously adapting its article selection strategy
based on user click feedback to maximize total user clicks in the long run.
The algorithm maintains matrix Da of dimension m×d at trial t, whose
rows correspond to m contexts that are observed previously for article a,
while Ca ∈ Rm is the corresponding response vector with click/no-click
user feedback. Applying ridge regression to the data (Da, Ca) gives an
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estimate of the coefficients:

θ̂a = (DT
aDa + Id)−1DT

a Ca,

where Id is the d× d identity matrix.
At each trial t, the algorithm selects for presentation the article

(arm) with the highest payoff:

pt,a = θ̂Ta xt,a + α
√
xTt,aA

−1
a xt,a,

where Aa = DT
aDa+ Id, α is a parameter that controls the variance and

x is the feature vector of an arm. After observing the reward (click/non-
click) for a given xt,a, the matrix A and vector C are updated with the
new observed datapoint xt,a and its corresponding reward.

The algorithm was tested using around 40 million events from the
Yahoo! Today module. Overall, there was more than 10% uplift in CTR
with LinUCB compared to ε-greedy and a smaller uplift of around 3%
compared to UCB (Auer et al., 2002a).

Latent Contextual Bandits (LCB) algorithm (Zhou and Brunskill,
2016) learns the set of latent models from prior users and leverages the
learned models to make recommendations for new users. The algorithm
consists of two phases. In phase one, LCB runs LinUCB on the first
j users to collect training data. In phase two, LCB trains/re-trains
latent models using the collected data. Latent user classes are modelled
using a mixture of linear regressions. A policy is constructed for each
learned latent model and then a contextual bandit algorithm adaptively
selects across the policies for a new task. In LCB, the policy set is
often smaller than the set of policies considered by generic contextual
bandit approaches. Additionally, LCB automatically constructs the set
of policies instead of relying on an oracle or expert to provide a good
set. More precisely, LCB constructs one policy for each learned latent
model and then runs a preselected contextual bandit algorithm that
takes in the set of n learned policies for the n latent contextual bandit
tasks.

The algorithm was tested using the Yahoo! news dataset. Thompson
sampling (Chapelle and Li, 2011) was used with LCB. With 15 and
30 latent models, LCB improved the CTR by about 5% and 10%,
respectively, compared to LinUCB.
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The contextual combinatorial bandit problem (Qin et al., 2014) is
another approach to incorporate prior knowledge into the algorithm.
The set St ⊆ 2[k] is the set of all possible subsets of arms at round t.
Each set of arms St ∈ St is called a super arm. At each round t, the
user observes k feature vectors corresponding to k arms. Then, the user
chooses one super arm to play and observes the payoff for each arm in
St. The payoff of each arm i is:

µi = θTxi + εi,

where θ is a parameter unknown to the user and the noise ε is a
zero-mean random variable.

C2UCB is an efficient algorithm for the contextual combinatorial
bandit problem. The basic idea is to maintain a confidence set for
the true parameter θ. For each round t, the confidence set is con-
structed from feature vectors x1, . . . , xt−1 and observed payoffs of se-
lected arms {µi(1)}i∈S1 , . . . , {µi(t − 1)}i∈St−1 from previous rounds.
Using this confidence set of the parameter θ and feature vectors of
arms Xt, the algorithm computes an upper confidence bound for each
payoff {µ1(t), . . . , µk(t)}. The upper confidence bounds and feature
vectors of arms Xt are then passed on to the oracle. The algorithm
plays the super arm returned by the oracle and uses the observed
payoffs to adjust the confidence sets. Thus, θ̂t = V −1

t−1Ct−1, where
Vt = Vt−1 +

∑
i∈St

xi(t)xi(t)T and Ct = Ct−1 +
∑
i∈St

µi(t)xi(t).
The algorithm was compared against LinUCB using the Movie-

Lens dataset. In terms of precision, the C2UCB algorithm performs
marginally better than LinUCB – the average distance between the two
algorithms is around 3%.

The CGPrank algorithm (Vanchinathan et al., 2014) exploits prior
information specified in terms of a Gaussian process kernel function,
which allows to share feedback in three ways: between positions in a
list, between items, and between contexts. Given a context, selecting
an optimal ranked list of k recommendations is difficult due to the
combinatorial number of choices. The problem becomes more tractable
under the assumptions that the reward of a list decomposes additively,
and that the reward factors into a position dependent effect pi inde-
pendent of the item and a relevance effect that is position independent.
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It is possible to normalize the feedback received by an item across all
positions that it has been shown at up to time t. Thus, given context xt,
if reward ρi(t) is observed for some item a shown in position i, ρi(t)/pi
provides an unbiased estimate of relevance µ̂(a, xt). Consequently, an
unbiased estimate for the reward obtained when showing a in position
j instead is given by ρi(t)pj/pi. In this way, the feedback can be shared
across positions.

In order to generalize feedback across items/contexts, the prior
information is presented in terms of a positive definite kernel func-
tion κ, where for two item/context pairs (a, x) and (a,, x,), the kernel
κ((a, x), (a,, x,)) represents the assumptions about the similarity of
expected rewards when presenting item a in context x as opposed
to presenting item a, in context x,. The reward function f can be
represented as a linear combination f(a, x) =

∑
j αjκ((a, x)(aj , xj)).

Capturing similarity via kernels allows interpreting the relevance func-
tion f as a sample from a Gaussian Process (GP) prior, with covariance
(or kernel) function κ. Consequently, the relevance is a collection of
normally distributed random variables, one for each item/context pair.
They are jointly distributed in a dependent manner via the kernel.
This joint distribution can be used to make predictions about unob-
served item/context pairs via inference in the GP model. For a new
item/context pair (a, x), its predictive distribution for f(a, x) is Gaus-
sian with mean µ and variance σ:

µt(a, x) = κt(a, x)T (Kt + I)−1ft

σ2
t (a, x) = κ((a, x), (a, x))− kt(a, x)T (Kt + I)−1kt(a, x),

where kt(a, x) = [κ((a1, x1), (s, z)), . . . , κ((at, xt), (a, x))]T and Kt is the
positive semi-definite kernel matrix such that

Kt,i,j = [κ((ai, xi), (aj , xj))]
The balance between exploration and exploitation is achieved through

linearly trading off the relative importance of the predictive mean and
the predictive variance to score each candidate item, i.e. select the item
a that maximizes, for the current context xt the objective UCBa,xt :

UCBa,xt = µt−1(a, xt) + β
1/2
t,a σt−1(a, xt),

where βt,a is the trade-off factor.
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CGPrank was tested using the Yahoo! News dataset and Google
e-books recommendation. In various settings of the algorithm, CGPrank
consistently outperformed the benchmark of UCB1 (Auer et al., 2002a)
(Section 2.2) in terms of CTR.

6.1.2 Other Approaches to Personalization

Thompson sampling (Thompson, 1933) has also been applied in the
area of ad recommendation.

The algorithm described in detail in Section 2.2.1 was tested in the
context of ad displays in Yahoo! (Chapelle and Li, 2011). Thompson
sampling achieves the best regret compared to LinUCB (Li et al.,
2010a) (Section 6.1.1 above) and ε-greedy (Sutton and Barto, 1998).
The modified version of Thompson sampling with α = 0.5 gives slightly
better results than the standard version with α = 1. In additional tests
with news recommendation on the Yahoo! portal, Thompson sampling
outperformed the baselines in terms of CTR.

Tang et al. (2015) propose a parameter-free bandit strategy, which
employs online bootstrap, to derive the distribution of estimated models
in an online manner. The bootstrap is a method to derive the distribution
of an estimator by data resampling. Instead of specifying a model
for data generating, it only uses the information from the observed
data. Observations up to time t are stored in D, while Di denotes
observations only from pulling arm ai. When any Di is small (fewer
than 30 observations), then a random arm is selected. When all Di
are sufficient large, then the offline bootstrap based contextual bandit
algorithm has the following steps: (1) for each arm ai randomly sample
ni observations from Di D with replacement and estimate θai , the
coefficient vector of the reward prediction model for arm ai based
on maximum likelihood estimation; (2) pull the arm with the highest
estimated payoff; (3) receive the reward ρt+1 after pulling the arm. If the
steps 1 and step 2 are repeated many times, then there is a collection
of bootstrap replications of θ̂ai , which approximately represent the
sampling distribution of θ̂ai .

In online bootstrap, a random variable Pj ∼ Poisson(1) is generated
representing the proportion of times the j-th observation is picked to
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a bootstrap sample in the offline setting. Then, in the online setting,
when the j-th observation is received, the algorithm knows how many
times this observation should appear in a bootstrap sample. The online
learning algorithm is invoked Pj times to learn j-th observation Pj
times. Then, the learned model is approximated to the model that
learns observations in a bootstrap sample offline. Stochastic gradient
ascent algorithm is used for updating the estimation of each bootstrap
replication θai .

The online bootstrap bandit was tested using the Yahoo! news
dataset. In a cold-start scenario, it achieved significantly higher CTR
compared to LinUCB (Li et al., 2010a) and Thompson sampling. How-
ever, its performance was only marginally higher compared to ε-greedy
and to a version of Thompson sampling that only maximizes the like-
lihood using stochastic gradient ascent and ignores the regularization
from the prior. In general, the performance of the baseline algorithms
was greatly affected by the initial parameter setting, which does not
happen in the bootstrap bandit.

6.1.3 Improving Cold Start Recommendations

Caron and Bhagat (2013) model the learning of preferences of coldstart
users using multi-armed bandits embedded in a social network. Each
user u is associated with a multi-armed bandit whose arms correspond to
items to recommend. The bandit strategy selects an item to recommend
to user u. The reward is 1 if u accepts the recommendation and 0
otherwise, with the reward modelled as a random variable following a
Bernoulli distribution.

Two strategies are proposed to leverage neighborhood estimates to
improve the learning rate of bandits for cold-start users. The MixPair
strategy combines estimates from pairs of neighboring bandits by ex-
tending the UCB1 algorithm (Auer et al., 2002a). MixPair considers
single edges (ui, uj) of the social graph, where user ui is a cold-start
user and the system has some information about user uj . Next, upper
confidence bounds are computed based on all samples seen so far both
from MABs associated with ui and uj . To aggregate data from the whole
neighborhood, the neighbor uj is re-sampled from the neighborhood ui



6.1. Personlization and the Cold Start Problem 369

at the beginning of each step t. Two sampling strategies were consid-
ered: uniform sampling, based on the assumption that all neighbors are
equally similar to user ui; multi-armed bandit defined on neighbors uj
sampled from the neighborhood of ui to learn the most similar ones
online.

The second strategy, MixNeigh, is a heuristic based on consensus in
the neighborhood of a user. The strategy first aggregates reward esti-
mates from all neighbors, and then chooses between this aggregate and
the user’s empirical estimate using a heuristic based on confidence radii.
This strategy interpolates between using the neighborhood estimate
as a prior and exploiting the empirical estimate when its precision is
good enough. Experimental results using the Last.fm dataset show that
MixNeigh is the best strategy for the cold start problem compared to
MixPair and UCB1.

Independent Bandit Algorithm (IBA) (Kohli et al., 2013) also aims to
support recommendation in scenarios where there is no prior information
about the quality of content in the system. The algorithm is based on
Ranked Bandit Algorithm (RBA) (Radlinski et al., 2008a) (Section 4.1).
It uses several instances of a multi-armed bandit algorithm working
independently to recommend a set of articles. This assumption allows
for a faster learning rate than online algorithms based on the diversity
principle – as is the case with RBA. The main difference between the
independent and the ranked bandit algorithm is the feedback. IBA gives
a reward of 1 to any article that was clicked while RBA only gives
a reward of 1 to the first article that was clicked. The independence
between bandit instances in IBA allows learning to happen in parallel
as opposed to the sequential learning in RBA, which allows for a quicker
convergence of the independent solution.

The algorithm was tested using the MovieLens dataset and compared
against RBA. Two algorithms were employed with IBA and RBA,
namely UCB1 (Auer et al., 2002a) and ε-greedy (Sutton and Barto,
1998) (Section 2.2). The performance of Independent-ε-Greedy and
Independent-UCB were roughly the same. In half of the experiments,
either Independent-ε-Greedy or Independent-UCB perform better than
Ranked-ε-Greedy. In experiments where Ranked-ε-Greedy performs
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better than the independent solutions, it only begins to perform better
after 10000 time steps.

DynUCB (Nguyen and Lauw, 2014) is a bandit algorithm that
divides the population of users into multiple clusters and customize
the bandits for each cluster, although the algorithm does not involve a
graph structure. This clustering is dynamic, i.e., users can switch from
one cluster to another as their preferences change. The algorithm starts
with k random clusters, which are refined over iterations. DynUCB still
maintains n bandits for n users. For each user ui, its coefficient wi is
learned based on matrix M with the set of items selected by the user in
the past and the corresponding reward/click vector Ci. The bandits in
the same cluster collaborate with one another so that when generating
a recommendation for user ui at time t, the estimation of expected
reward for each arm a is based on cluster level coefficient wk, learned
from cluster level parameters Ck and Mk derived from the parameters
Ci and Mi of each user ui in a given cluster. Thus, each user benefits
from the feedback provided by other users in the same cluster. At each
iteration, users are reassigned to the cluster whose coefficient wk is
closest to their representation of wit – a practice reminiscent of the
k-means clustering algorithm. This dynamic reassignment of clusters
allows DynUCB to adapt to changing contexts and user preferences
over time.

DynUCB was tested using the Delicious dataset and the LastFM
dataset. At k = 16, DynUCB has higher cumulative rewards than
LinUCB (Li et al., 2010b), however, only in the long run with t > 20000.
In the short run (for t < 20000), LinUCB tends to have a higher
cumulative reward.

6.2 Social Networks and Recommender Systems

Incorporating social components, such as network of relationships be-
tween users, into bandit algorithms can also improve the quality of
recommendations. These social relationships can be explicitly encoded in
a graph, where adjacent nodes/users are deemed similar to one another.
When there are many users, it is often possible to identify subgroups
where users share interests, thereby facilitating targeting users by means
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of group recommendations. Thus, instead of learning a different model
for each user, the system only needs to learn a single model for each
group.

6.2.1 Graph Clustering with Bandits

The Cluster of Bandits (CLUB) algorithm (Gentile et al., 2014) aims to
capture the similarities between neighbouring users in a graph structure.
There are n parameter vectors u1, u2, . . . , un, one per node (user), where
nodes within the same cluster Vj share the same vector. The algorithm
maintains at time t an estimate wit for vector ui associated with user i ∈
V . Vectors wit are updated based on the payoff operating on the context
vectors. Every user in V is associated with a linear bandit algorithm1.
The prototype vector wit is the result of a standard linear least squares
approximation to the corresponding unknown parameter vector ui. In
particular, wit−1 is defined through the inverse correlation matrix M−1

it−1
and the additively updated vector Cit−1 that incorporates user feedback.
Additionally, the algorithm maintains at time t an undirected graph
Gt, whose nodes are the users in V . The algorithm starts off from the
complete graph, and progressively erases edges based on the evolution
of vectors wit . The graph encodes the current partition of V by means
of the connected components of Gt. At each iteration t, the algorithm
receives the index it of the user uit to serve along with the associated
context vectors, and must select one among them. First, the algorithm
determines which cluster V , node it belongs to. Next, it builds the
aggregate weight vector w for that cluster by taking the prior of the
context vectors associated with i and computing the least squares
approximation as if all nodes i ∈ V have been collapsed into one. This
weight vector is then used to select an appropriate context for the user.
Once this selection is done and the associated payoff associated with
the context vector is observed, the matrix with prior observations and
feedback vector are updated. Although the update is only performed
at node it, it will also implicitly update the aggregate weight vector w
associated with a given cluster V . Finally, the cluster structure may

1See Cesa-Bianchi et al. (2013) for more theoretical details of assigning a linear
bandit to each user in node clustering.
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be modified – the algorithm compares the distance between the weight
vectors of all existing edges. If the distance between a node and the
remaining nodes within the same cluster is large, then that node is
moved to a different cluster and the graph is repartitioned.

CLUB was tested using the Yahoo! news dataset. It achieved higher
CTR compared to LinUCB (Li et al., 2010a) (Section 6.1.1).

The Collaborative Linear Bandit algorithm (CoLin) (Wu et al., 2016)
also models collaboration between bandits based on graph. However,
while in previous graph based models connected users in the graph were
assumed to have similar underlying bandit parameters with rewards
independent across users, in CoLin neighboring users do not have to
share similar bandit parameters but they generate influence over their
neighbors’ decisions. The “collaboration” among bandits is incorporated
in global estimation of the parameter θ, which is derived from matrix
Mt with context vectors and vector Ct incorporating obtained payoffs,
which store global information shared among all the bandits in the
graph. More specifically, the context vector and payoff observed for a
given user at time t are propagated through the whole graph via the
relational matrix W . It is derived from projected context vectors on
every user and sparse vectors with observations of active users only. Due
to this information sharing, although some users have not generated
any observation yet (i.e., cold start), they can already start from a
non-random initialization of their bandit parameters θ. When W is
an identity matrix, i.e., users have no influence on each other, the
estimation of θ reduces to independently computing n different θs.

CoLin was tested with the Yahoo! news dataset. CoLin outperformed
the LinUCB (Li et al., 2010a) baseline. It initially it performed worse
than CLUB in terms of CTR, however, its performance improved over
iterations. As some popular news articles became out-of-date, CLUB
cannot correctly recognize their decreased popularity, and thus provides
worse recommendations than CoLin resulting in decreased CTR over
time.

COFIBA (Li et al., 2016b) is a graph clustering algorithm that only
applies to the case when the content universe is large but known a priori,
which is often the case in commercial recommender systems. COFIBA,
relies on adaptive clustering of both users and items. COFIBA stores
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in round t an estimate wi,t of vector ui associated with user i. Vectors
wi,t are updated based on the payoff feedback with a standard linear
least-squares approximation to the corresponding ui. Every user i holds
a linear bandit algorithm that operates on the available content through
the inverse correlation matrix M and the feedback vectro C subject to
additive updates. Based on the local information encoded in the weight
vectors wi,t−1 and the confidence bounds, the algorithm also maintains
a family of clusterings of the set of users, and a single clustering over
the set of items.

On both sides, such clusterings are represented through connected
components of undirected graphs (as in Gentile et al. (2014) discussed
at the beginning of this section), where nodes are either users or items.
At time t, COFIBA receives the index it of the current user to serve,
along with the available item vectors xt,1, . . . , xt,l and must select one
among them. The algorithm computes neighborhood sets Vk based on
the current clustering of users. Set Vk should be regarded as the current
approximation to the user cluster it belongs to when the clustering
criterion is defined by item xt,k. Each neighborhood set then defines a
compound weight vector w through the aggregation of the corresponding
matrices Mi,t−1 and vectors Ci,t−1. After receiving the payoff (and
updating M and C), COFIBA updates the clusterings of users and
items. In round t, there are multiple graphs Gk at the user side and a
single graph at the item side. On both user and item sides, updates take
the form of edge deletions. Updates at the user side are only performed
on the graph G the selected items x. Updates at the item side are
only made if it is likely that the neighborhoods of the user significantly
changed when considered with respect to two previously deemed similar
items. Specifically, if item xh was directly connected to item xk at the
beginning of round t and, as a consequence of edge deletion at the user
side, the set of users that are now likely to be close to xh is no longer
the same as the set of users that are likely to be close to xk, then this
is an indication that item xh is not inducing the same partition over
users as xk, hence the edge (xk, xh) gets deleted.

In order to allow the algorithm to scale, instead of starting off
with complete graphs over users, each time a new cluster over items is
created, the complete graph is sparsified randomly retaining with high
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probability the underlying clusterings over users. This works under the
assumption that the latent clusters are not too small.

COFIBA was compared against LinUCB, DynUCB and CLUB. In
terms of CTR assessed using the Yahoo! dataset, it performed marginally
better than LinUCB and CLUB, however it performed substantially
better than DynUCB. In two other datasets concerned with CTR on
adverts obtained from Telefonica and Avazu, COFIBA outperformed
all the benchmark algorithms by between 5% and 20%.

The Context Aware clustering of Bandits algorithm (CAB) (Gentile
et al., 2017) incorporates collaborative effects into inference by making
changes in the way items are recommended and the weights w are
updated. At time t, before recommending an item to the user, CAB
first computes for each item the set of users that are likely to give the
item a similar payoff. This set is the estimated neighborhood of user
ui with respect to item xk. Earlier approaches (described above in this
section) update the user proxies wi by solving a regularized least squares
problem with feature representations of items presented previously to
user i and the corresponding payoffs. CAB, on the other hand, allows a
user ui to inherit updates obtained through an item being presented to
another user uj if the two users agree on their opinion on item x with a
sufficiently level of confidence. If CAB is not confident enough about the
opinion it has along the direction xk, then only the weight wi associated
with user ui is updated. However, if CAB is confident, then the proxy
updates are performed for all users in its estimated neighborhood. All
users in the neighbourhood undergo the same update. CAB is very
flexible in handling a fluid set of users. Due to its context-sensitive user
aggregation step, CAB allows users to be easily added or dropped.

In terms of CTR, CAB substantially outperformed the baselines of
CLUB, DynUCB and LinUCB when using the Telefonica dataset, the
Avazu dataset and the KDD Cup 2012 dataset.

6.2.2 Spectral Bandits

Spectral bandits provide another approach to capturing similarities
between users and/or recommended items. Valko et al. (2014) study a
bandit problem where the payoffs of arms are smooth on a graph. This
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framework applies to online learning problems where each recommended
item is a node in a graph and its expected rating is similar to its
neighbors. The goal is to recommend items that have high expected
ratings. In this setting, the arms are orthogonal to each other. This
provides additional information across the arms through the estimation
of the parameters of the algorithm. The assumption is that there exists
a known orthogonal matrix U such that w = Uµ has a low norm, which
means that w can be estimated using penalization and then recover µ,
where µ is the mean reward. Given a vector of weights w, its Λ norm is
defined as:

‖ w ‖Λ=

√√√√ L∑
l=1

λlw
2
l =
√
wTΛw

The aim is to penalize the coefficients w that correspond to the eigen-
vectors with the large eigenvalues.

Spectral bandits are implemented through SpectralUCB algorithm,
which is based on LinUCB (Li et al., 2010a) (Section 6.1). The algorithm
uses regularized least-squares estimate wt of the form:

wt = arg min
w

(
t∑

v=1
[〈xv, w〉 − ρv]2+ ‖ w ‖Λ

)

A key part of the algorithm are the ct ‖ x ‖V −1
t

confidence widths for
the prediction of the rewards:

ct = 2R
√
d log(1 + t/λ) + 2 log(1/δ) + const,

where R is the regret, λ and δ are regularization and const is a constant.
The definition of ct is based on the effective dimension d, which is
specifically tailored to the specific setting. Effective dimension is a
proxy for the number of relevant dimensions and is defined as the
largest d such that (d− 1)λd ≤ T

log(1+T/λ) The effective dimension d is
small when the coefficients λi grow rapidly above T .

Another algorithm called SpectralEliminator scales better with d
compared to SpectralUCB. The main idea behind the algorithm is to
divide the time steps into sets in order to introduce independence and
eliminate the arms that are not promising much faster.
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SpectralUCB was tested using the MovieLens dataset. SpectralUCB
suffers only about a quarter of regret of LinUCB. The regret is further
reduced with SpectralEliminator.

Spectral Thompson Sampling (SpectralTS) (Kocák et al., 2014) is
an alternative to SpectralUCB based on Thompson sampling (Chapelle
and Li, 2011) (Section 2.2.1), which is used to decide which arm to
play. The current user preferences are encoded in vector wt. The algo-
rithm’s knowledge about wt is represented as the normal distribution
N (ŵ(t), c2M−1

t ), where ŵ(t) is an approximation of the unknown pa-
rameter w and c2M−1

t reflects the uncertainty about it, and c is the
confidence width. At each time step t a sample w̃(t) is generated from
the distribution N (ŵ(t), c2M−1

t ) and an arm is selected that maximizes
xiw̃(t), where xi is the context vector of arm ai. After receiving a
reward, the estimate of w is updated. The computational advantage
of SpectralTS compared to SpectralUCB is that it does not require
computing the confidence bound for each arm. In SpectralTS, it is only
necessary to sample w̃, while SpectralUCB requires computing a M−1

t

norm for each of n feature vectors.
The experimental evaluation using the MovieLens dataset show that

the performance of SpectralTS is similar or slightly better than that of
SpectralUCB in terms of cumulative regret.

6.3 Collaborative Filtering and Matrix Factorization

Recommender systems often rely on past user behavior, e.g. previous
transactions or product ratings, without requiring the creation of explicit
profiles. This approach is known as collaborative filtering (Koren et
al., 2009). Collaborative filtering analyzes relationships between users
and interdependencies among products to identify the relationships
between new users and recommended items. Latent factor models are
an alternative approach that makes recommendation by characterizing
both items and users on a number of factors inferred from the users’
ratings patterns. Matrix factorization is the most popular realization of
latent factor models. In its basic form, matrix factorization characterizes
both items and users by vectors of factors inferred from item rating
patterns.
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Bresler et al. (2014) consider a recommender system with n users
and m items. At each time step, each user is recommended an item
that they have not consumed before. The user rates the item +1 (like)
or −1 (dislike). The reward earned by the system is the total number
of liked items across all users. The latent preferences for user uj are
represented by vector xj ∈ [0, 1]m. User uj likes item i with probability
pj,i, where item i is likable if pj,i > 1/2 and unlikable if pj,i < 1/2. The
aim is to maximize the expected number of likable items recommended
to the user, where the likable items can be recommended in any order.
Ratings obtained from other (similar) users are used to recommend
new items to user ui. The assumption is that there are k different types
of users, where users of the same type have identical item preference
vectors. A user belongs to each user type with probability 1/k.

Collaborative-Greedy implements the above concept. The algorithm
is similar to the ε-greedy algorithm (Sutton and Barto, 1998) with the
restriction that items cannot be recommended multiple times to the
same user2. In Collaborative-Greedy, the greedy choice, or exploitation,
uses the cosine-similarity measure. The exploration, on the other hand,
is split into two types, a standard item exploration in which a user is
recommended an item that they have not consumed yet uniformly at
random, and a joint exploration in which all users are asked to provide a
rating for the next item in a shared, randomly chosen sequence of items.
This helps the algorithm to learn about similarity between users. The
probability of random exploration, which is decaying with the number
of users, is set to 1/nα for some pre-specified value of α. The probability
of joint exploration is set to 1/tα and decaying with time.

Nakamura (2014) proposes an approach to collaborative filtering
based on UCB (Auer et al., 2002a). The aim is to solve a direct mail
problem in which a system everyday selects a set of user-item pairs,
sends a recommendation mail of that item to the user and receives a
response from the user. Each user/item pair can be selected at most
once during the period. In this model, the only information used for

2See also Deshpande and Montanari (2012) for an analysis of linear bandits in
data poor (high dimensional) regime with specific reference to recommender systems.
In the pre-processing step, offline collaborative filtering through matrix completion
is solved to compute feature vectors for items.
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learning user’s preference is user’s response and no feature of users
and contents is used. User’s feedback to the recommendation takes
the form of click or purchase that can be converted into a rating. The
objective is maximization of the sum of positive ratings given to the
recommended items. The total number of recommendations is assumed
to be vary small compared to the number of all the user/item pairs. The
UCB-based algorithm deterministically selects user/item pairs using an
index which depends on both the covariance matrices of the posterior
distributions of latent user and item vectors. In order to use the bandit
collaborative strategy, two methods to obtain approximations to these
covariance matrices are proposed. The first approach applies variational
Bayes (VB) to stochastic matrix factorization (Lim and Teh, 2007),
while the second approach uses probabilistic matrix factorization (PMF)
(Mnih and Salakhutdinov, 2008). These two approaches gave rise to two
UCB strategies: UCB-VB and UCB-PMF.

Experimental results based on synthetic data as well as a number
of small datasets show that UCB-VB and UCB-PMF significantly
outperform their non UCB counterparts in terms of cumulative user
rating.

FactorUCB (Wang et al., 2017a) is another approach to matrix
factorization based on bandits. Two modifications compared to a tra-
ditional bandit approach are introduced. First, to reduce the reward
prediction uncertainty on new items, observable contextual features are
introduced into the estimation of latent item factors. Second, mutual
influence among users is incorporated to reduce the reward prediction
uncertainty on new users. The dependency among users is encoded
directly into the reward generation assumption for matrix factoriza-
tion. The observed reward from each user is determined by a mixture
of neighboring users. Thus, users are placed on a weighted graph G

encoding the affinity relation among users, which allows the perfor-
mance of the estimation across them simultaneously. Each node i ∈ G
is parameterized by the latent user factor θi for user ui and each edge
represents the influence across users in reward generation. This graph is
represented as an n× n stochastic matrix W , in which each element is
proportional to the influence that user uj has on user ui in determining
the reward of different items. W is column-wise normalized.
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The reward generation assumptions are enhanced as follows:

ρat,i = xTat
Θxwi + vTat

Θvwi + ηt,

where xa is a contextual feature of item a, va is the vector with latent
factors for item a, Θ represents latent user factors decomposed into two
separate sub-matrices corresponding to the observed context features x
and latent factors v. Thus, not only the observed contextual features
but also the estimated latent factors are propagated through the user
graph to determine the expected reward of items across users. Such
information sharing greatly reduces sample complexity in learning the
latent factors for both users and items.

Experimental results using the Yahoo! news dataset and the Last.fm
dataset show that factorUCB improves CTR compared to graph based
bandit algorithms that do not employ laten factors, such as CoLin and
CLUB (Section 6.2.1 for more details).

Bayesian bandit approaches have also been applied to matrix factor-
ization3. Particle Thompson sampling for matrix factorization (PTS)
(Kawale et al., 2015) is a method based on Thompson sampling (Section
2.2.1) augmented with an online Bayesian probabilistic matrix factoriza-
tion method based on the Rao-Blackwellized particle filter. In PTS, it
is assumed that ratings come from the normal distribution with a fixed
but unknown latent features (W,V ), representing the user and item
latent features, respectively. The user rates the recommended items and
the system receives this rating as a reward. The system recommends
item j at time t using a policy based on the past ratings. The highest
expected reward the system can earn at time t is maxjW T

i Vj , which is
achieved if the optimal item j = arg maxjW T

i Vj is recommended.
The main challenge when using Thompson sampling for matrix

factorization bandit is the incremental update of the posterior of the
latent features (W,V ). An efficient Rao-Blackwellized particle filter
(RBPF) is used to exploit the structure of the probabilistic matrix
factorization model. Since the particle filter needs to estimate a set of

3See also Zhao et al. (2013) where an interactive collaborative framework is
introduced. The framework uses Thompson sampling and several UCB algorithms
to illustrate how exploration and exploitation can be balanced in this interactive
framework.
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non-time-varying parameters, a crucial aspect of RBPF is an effective
and efficient MCMC-kernel Kt(V

′
, σ,W ;V, σW ) stationary with respect

to the posterior distribution. The design of the move kernel are based
on two observations. First, W and σV can be used as auxiliary variables,
effectively sampling (W,σV | V, σW ) and then (V ′ , σ,W | W,σ,v). This
move, however, can be highly inefficient due to the number of variables
that need to be sampled at each update. The second observation is the
key to an efficient implementation: latent features for all users except
the current user are independent of the current observed rating. Thus,
at time t, it is sufficient to only resample the latent features for the
current user. Furthermore, it is also sufficient to resample the latent
feature of the current item.

In experimental results using a number of real-life datasets, such as
MovieLens and Yahoo Music, PTS obtains substantially lower regret
compared to probabilistic matrix factorization (Mnih and Salakhutdinov,
2008).

6.4 Feature Learning with Bandits

This section provides an overview of the application bandits to learn
the most relevant features for personalized recommendation,

6.4.1 User Specific Features

Traditionally, bandit algorithm utilize the entire feature space when
learning a user model but in certain applications dimensionality reduc-
tion can used to limit the size of a large feature space in order to speed
up convergence. However, thus obtained user models capture mostly the
characteristics of a typical user and may fail to learn the preferences of
a user that deviates from stereotypical users. The challenge is to be able
to leveraging prior knowledge to reduce the cost of exploration for new
users, while maintaining the representational power of the full feature
space to cater to users’ personal preferences. Yue et al. (2012b) propose
a coarse-to-fine hierarchical approach for encoding prior knowledge.
While, a coarse, low-rank subspace of the full feature space is sufficient
to accurately learn a stereotypical user’s preferences, the coarse-to-fine
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feature hierarchy allows exploration in the full space when a user is not
perfectly modeled by the coarse space. CoFineUCB is the algorithm
that automatically balances exploration within the coarse-to-fine feature
hierarchy.

For example, there are features that correspond to interest in articles
about baseball and cricket. Prior knowledge suggests that users are
typically interested in one or the other. Then, a feature subspace can
be designed where baseball and cricket topics project along opposite
directions in a single dimension. A bandit algorithm can leverage this
structure by first exploring at a coarse level to determine whether
the user is more interested in articles about baseball or cricket. This
approach can be formalized as a hierarchy that is composed of the
full feature space and a subspace, where matrix X ∈ <d×n denotes
a n-dimensional subspace, which is constructed by using the top n

singular vectors of W containing the user profiles.
The user’s preferences are denoted by weight vector w = Xw̄ +w⊥,

where w̄ is the projected user profile and w⊥ is the residual, or orthogonal
component, of w with respect to X. The principle can be extended to
multiple hierarchies:

w = X1(X2(. . . (Xiwi + wi−1,⊥) . . . w1,⊥) + w⊥.

The CoFineUCB algorithm generalizes the LinUCB algorithm (Li et
al., 2010a) (Section 6.1), and automatically trades off between exploring
the coarse and full feature spaces. At each iteration t, CoFineUCB
estimates the user’s preferences in the subspace w̃t, as well as the full
feature space wt. Both estimates are solved via regularized least-squares
regression:

w̃t = arg min
t−1∑
i=1

(w̃>x̃i − C̃i)2 + λ̃ ‖ w̃ ‖2,

where x̃i = X>xi denotes the projected features of the action taken at
time i, C is the user feedback, and λ is the regularization parameter.
Then, wt is estimated:

wt = arg min
t−1∑
i=1

(w̃>xi − Ci)2 + λ ‖ w −Xw̄t ‖2,
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which regularizes wt to the projection of w̄t back into the full space.
CoFineUCB chooses then the item with the largest potential reward to
present to the user: xt = arg maxw>t + ct(x) + c̃t(x), where ct(·) and
c̃t(·) indicate the full space and the subspace, respectively.

CoFineUCB was compared to LinUCB (Li et al., 2010a) in the
context of personalized news recommendation. CoFineUCB dramatically
outperforms LinUCB applied to the full data, while its performance
is comparable to LinUCB applied only to the subspace of the data.
Although the experimental results show the benefit of exploring in the
subspace, they also demonstrate that for atypical users, the subspace is
not sufficient to adequately learn their preferences resulting in linear
regret when only the subspace is used.

6.4.2 Feature Clustering

The first approach to learning an optimal online matching between
two feature spaces relied on taxonomies (Pandey et al., 2007). In the
particular problem tackled in Pandey et al. (2007) pages and ads are
classified into page and ad taxonomies, respectively. There are two
successive levels of the taxonomies with the lower level nodes of the
page and ad taxonomies referred to as page-classes and ad-classes,
respectively. All page-classes (ad-classes) that are children of the same
parent node from the upper level constitute a page-class group (adc-
lass group). There is also a page-ad connection matrix X = S × A,
where each cell has a CTR value for the corresponding (page-class X,
ad-class A) pair. The goal is to learn matrix X so as to maximize
the expected total number of clicks. This is translated into a MAB
problem, where for each page-class a bandit is create with the arms
given by the ad-classes and the payoff probabilities by the CTR values.
However, the arms of each bandit and the bandits themselves are not
independent since S and A are partitioned into page-class and ad-class
groups. The arms in the same group are likely to have similar payoff
probabilities in terms of CTR values. The bandit algorithm runs at
two levels: the group level followed by a cell level. The switch between
the levels occurs when a given criteria for exploration at the group
level occurs. A Bayesian framework reminiscent of Thompson sampling
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(Chapelle and Li, 2011) (Section 2.2.1) exploits dependencies among the
arms. Experimental results show that, compared to a traditional UCB
algorithm with independent arms, the proposed approach achieves a
substantially higher cumulative reward.

A similar approach was proposed by Daee et al. (2016), where
feedback from multiple domains is combined, i.e. retrieved items (docu-
ments) and their features (keywords). A probabilistic model is employed
to account for the relationship between the two domains. The approach
assumes that there is a document-keyword matrix where each entry spec-
ifies the likelihood of document ai being generated by keyword kj . This
matrix is generated from the data model that expresses how keywords
and the documents are related, e.g. normalized tf-idf representations of
documents generated from bag of words. The user provides relevance
feedback to both documents and keywords. The unknown parameter
θ defines the shared link between relevance (reward) distributions for
documents and keywords. After the user has interacted with a set of
documents and a set of keywords, the posterior distribution of θ is
updated. Thompson sampling (Chapelle and Li, 2011) is applied to bal-
ance the exploration and exploitation when selecting which documents
and keywords to present to the user.

Wang et al. (2016) describe how to learn the hidden features for
contextual bandit algorithms. Hidden features are explicitly introduced
in the reward generation assumption, in addition to the observable
contextual features. This approach can be particularly useful in col-
laborative filtering solutions based on latent factor models. Through
coupling the observed contextual features and the hidden features, the
reward can be formalized as follows:

ρat,u = (xat , vat)T (θxu, θvu) + ηt,

where xat and vat are the observed and hidden features of item at, and θxu
and θvu are the corresponding bandit parameters, while θu = (θxu, θvu) are
the unknown preference parameters of user u. The algorithm assumes
that the dimension d of hidden features is known to the learner ahead
of time.

Due to the fact that only xat is shown to the user, the residual
between the true reward and the user’s estimate no longer has a zero
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mean as assumed in most linear contextual bandit algorithms. Instead,
the residual of reward estimation is constantly shifted by vTat

θvu. Due to
the coupling between θu and va in the reward generation, a coordinate
decent algorithm built on ridge regression is used to estimate the
unknown bandit parameter θu for each user and the unknown hidden
feature va for each item.

Experimental results using data from the Yahoo! Today module
showed that on average the bandit algorithm with hidden features
achieves 0.5 higher CTR compared to LinUCB (Li et al., 2010a). In
experiments with Last.fm and Delicious datasets, the proposed algorithm
achieved higher payoff compared to LinUCB with the difference getting
larger as time progresses. The initial improvement was particularly stark
with cold-start users showing the advantage of learning hidden features.

6.5 Recommendations with a Limited Lifespan

In many recommendation scenarios, the recommended items, i.e. prod-
ucts, advertisements or news articles, are only relevant or available
for a short period of time. This aspect adds a new dimension to the
design of bandit algorithms that can be successfully applied in many
recommender systems. In mortal bandits (Chakrabarti et al., 2009) arms
have (stochastic) lifetime after which they expire. In this setting an al-
gorithm needs to continuously explore new arms, unlike in the standard
bandit model where arms are available indefinitely and exploration is
reduced once an optimal arm is identified. In the mortal bandits model,
at the end of each time step t, one or more ads (arms) may die and be
replaced with new ads. There are two assumptions: (1) change happens
only through replacement of old ads so the number of ads remains
constant; (2) as long as an ad is alive, its payoff is fixed. Death can be
modeled in two ways. An ad may have a budget l that is known a priori
and revealed to the algorithm. The ad then dies immediately after it
has been selected l times. This case is referred to as budgeted death.
Alternatively, each ad may die with a fixed probability p after every
time step, irrespective of whether it was selected. This is equivalent to
each ad being allocated a lifetime budget li drawn from a geometric
distribution with parameter p that is fixed when the arm (ad) is born
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but is never revealed to the algorithm. In the second case, called timed
death, new arms have an expected lifetime of l = 1/p.

The reward function is modelled in two ways. In the state-aware
(deterministic reward) case, the reward is ρit = µit , where µit is the
payoff of arm ai at time t. This provides complete information about
each ad immediately after it is displayed. This approach is implemented
through the DetOpt algorithm, where an arm with the highest payoff
so far (among all the active arms) is played until it expires. At that
point, a random arm is played and its payoff is compared against that
of the remaining active arms to find the best arm.

In the state-oblivious (stochastic reward) case, the reward is a
random variable that is 1 with probability µit and 0 otherwise. This ap-
proach is implemented through a modified version of DetOpt algorithm.
The intuition behind this modification, called Stochastic, is that instead
of pulling an arm once to determine its payoff µi, the algorithm pulls
each arm n times and abandons it unless it looks promising. A variant,
called Stochastic with Early Stopping, abandons the arm earlier if its
maximum possible future reward will not justify its retention

Additionally, an epoch-greedy heuristic based on standard MAB is
proposed in Chakrabarti et al. (2009). The heuristic works in two stages:
(1) select a subset of k/c arms uniformly at random from the total k
arms at the beginning of each epoch; (2) operate a standard bandit
algorithm on these until the epoch ends, and repeat. Step 1 reduces the
load on the bandit algorithm, allowing it to explore less and converge
faster, in return for finding an arm that is probably optimal only among
the k/c subset. The constant c and the epoch length balance the speed
of convergence of the bandit algorithm, the arm lifetimes, and the arm
payoff distribution. The value of c is chosen empirically. This heuristic,
is implemented through an extension of the UCB1 algorithm called
UCB1k/c.

The mortal bandit setting requires different performance measures
than the ones used with static bandits. In the static setting, very little
exploration is needed once an optimal arm is identified and so the quality
measure is the total regret over time. In the mortal bandit setting the
algorithm needs to continuously explore newly available arms. What
is then taken into consideration is the long term, steady-state, mean
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regret per time step of various solutions. This regret is defined as the
expected payoff of the best currently alive arm minus the payoff actually
obtained by the algorithm.

The UCB1k/c algorithm, Stochastic and Stochastic with Early Stop-
ping were tested using real-life data with the UCB1 algorithm as the
baseline. The test data consisted of approximately 300 real ads be-
longing to a shopping-related category when presented on web pages
classified as belonging to the same category. In terms of regret per time
step, Stochastic with Early Stopping performs best, while the regret of
UCB1 remains more or less flat throughout the timestamps.

Komiyama and Qin (2014) formulate a variant of the bandit problem,
where new arms are dynamically added into the candidate set and the
expected reward of each arm decays as the rounds proceed. A time-
decaying MAB goes as follows. At each round t, a system selects one
arm ai from the candidate set At and receives a random reward ρi,t.
The reward information of the other arms is not available. The reward
of arm ai is drawn from a Bernoulli distribution parameterized by ρi,t
which consists of two parts: the sum of a constant part ρi and several
basic decaying functions fk(t− ti), where t− ti is the number of rounds
since arm ai appears for the first time. The expected reward of arm ai
at round t can be modeled as ρi,t = ρi +

∑n
k=1wi,kfk(t− ti), where wi,k

is the weight associated with the k-th decaying function for arm ai. The
representation of ρi,t is xTi,tθi, where xi,t is the context vector for arm ai
at time t and θi contains the values of functions f1(t− ti), . . . , fn(t− ti).

The key to solve the time-decaying MAB problem is to effectively
estimate θi, i.e. the weights of individual decaying functions for each
arm. This can be estimated through linear bandits, which perform an
online estimation of linear weights with bandit feedback. The difference
between a general linear bandit and the time-decaying bandit is that
the latter contains multiple linear bandits: each arm can be considered
as an instance of a linear bandit problem whose context consists of
a constant term and a series of temporal functions. At each round,
the time-decaying bandit algorithm, for each arm ai,t constructs a
matrix Mi,t and a vector Ci,t, which are the sum of the covariance
and the reward-weighted sum of features, respectively. ρ̂i,t, the least
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square estimation of the reward at round t, is given as xTi,tM−1
i,t Ci,t. To

guarantee the sufficient amount of exploration, the following confidence
bound is introduced Ui,t = wt ‖ xi,t ‖M−1

i,t
, where ‖ x ‖M is the matrix

induced vector norm
√
xTMx. Time-decaying UCB chooses the arm

with the maximum UCB index.
Rotting Bandits (Levine et al., 2017) is another variant of the MAB

framework, where each arm’s expected reward decays as a function of
the number of times it has been pulled. This approach is also motivated
by many real-world scenarios, such as online advertising or content
recommendation. A number of heuristic-based algorithms for the rotting
bandit framework have been proposed. The sliding window average
(SWA) is a heuristic for ensuring, with high probability that, at each
time step, the agent did not sample significantly sub-optimal arms too
many times. The heuristic is designed for the non-parametric setting,
where the only available information is that the expected rewards
sequences are positive and non-increasing in the number of pulls. The
idea behind SWA is that after a significantly sub-optimal arm has been
pulled “enough” times, the empirical average of these pulls would be
distinguishable from the optimal arm for that time step. Thus, given
any time step, there is a bounded number of significantly sub-optimal
pulls compared to the optimal policy.

The parametric setting assumes that there is prior knowledge that
the expected reward is comprised of a sum of an unknown constant part
and a rotting part known to belong to a set of specific models. Two
heuristics are proposed for this setting. The closest to origin (CTO)
heuristic simply states that the true underlying model for an arm is the
one that best fits the past rewards. The fitting criterion is proximity to
the origin of the sum of expected rewards shifted by the observed rewards.
The differences closest to origin (D-CTO) approach is composed of two
stages: first, detecting the underlying rotting models, then estimating
and controlling the pulls due to the constant terms.

Lacerda (2017) describe a multi-objective ranked bandit algorithm
that dynamically prioritizes different recommendation quality metrics
during the life cycle of the user in the system. The algorithm is based
on the ranked bandit algorithm (Radlinski et al., 2008a) (Section 4.1)
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and consists of four elements: (1) a scalarization function, (2) a set
of recommendation quality metrics, (3) a weighting scheme, and (4) a
base MAB algorithm. The scalarization function defines how to weight
each objective to compute a relevance score for each item. The quality
metrics considered are accuracy, diversity and novelty. Accuracy is a
typical goal of recommender systems ensuring that recommended items
are relevant to the query. However, suggesting items that are not easily
discovered by the users is also essential, and it can be measured by
the diversity and novelty of the recommendations. Diversity is related
to the internal differences within a ranking, whereas novelty can be
understood as the difference between present and past experiences of
the user. Additionally, different scenarios require different objectives
prioritization. A weighting regressor is used to dynamically update
the weights for each recommendation quality metric. Three different
weighting schemes are considered taking into account user, system, and
ranking position perspectives.

The multi-objective ranked bandit algorithm was tested using the
Yahoo! News dataset. In the dynamic weighting schemes, the highest
CTR is obtained when prioritizing the ranking position, with the system
prioritization obtaining the lowest results. In terms of quality metric,
the best performance is achieved when prioritizing novelty. The best
performing base algorithm is Thompson sampling (Chapelle and Li,
2011) (Section 2.2.1), which outperforms LinUCB (Li et al., 2010a)
(Section 6.1.1) and UCB1 (Auer et al., 2002a) (Section 2.2).

Bouneffouf et al. (2012) tackle the problem of user’s content evolu-
tion in mobile context-aware recommender systems. For example, in
certain situations the user might need the best information that can
be recommended by the system, such as, during a professional meeting.
In such a situation, the system must exclusively perform exploitation.
In the other case, where, for example, the user is using the system at
home for entertainment, the system can be exploratory in its recom-
mendations. The user’s model is composed of a set of situations with
their corresponding user’s preferences.

To allow the system to decide whether to exploit or explore, the
contextual ε-greedy algorithm (Sutton and Barto, 1998) (Section 2.2)
is used. The algorithm compares the current user’s situation with
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the general class of situations. Depending on the similarity between
the current situation and its closest situation from the general set of
situations, two scenarios are possible. If the similarity is higher than
a pre-defined threshold, the ε-greedy algorithm is used with ε = 0
(exploitation). If the similarity falls below a pre-defined threshold, then
the ε-greedy algorithm is used with ε > 0 (exploration) with the value
of ε dependant on the level of similarity to a given pre-defined situation.
The degree of exploration decreases when the similarity between the
two situations increases.

6.6 Simultaneous Multiple Arms Evaluation

In many recommender systems, the user can select or click on multiple
items. This situation can be translated into a bandit problem where
multiple arms can be pulled simultaneously.

The framework of combinatorial multi-armed bandit (CMAB)4 allows
an arbitrary combination of arms into super arms. The CMAB problem
contains a constraint S ⊆ 2[n], where 2[n] is the set of all possible subsets
of n arms. Every set of arms S ∈ S is a super arm of the CMAB problem.
In each round, one super arm S ∈ S is played and the outcomes of arms
in S are revealed. The algorithm does not have the direct knowledge
about the problem instance, e.g. how super arms are formed from the
underlying arms and how reward is defined. Instead, the algorithm has
access to a computation oracle that takes the expectation vector of
possible rewards as the input and computes the optimal or near-optimal
super arm S. The CMAB approach is implemented through the CUCB
algorithm. The algorithm maintains an empirical mean µ̂i for each arm
ai. The actual expectation vector µ given to the oracle contains an
adjustment term for each µ̂i, which depends on the round number t and
the number of times arm ai has been played stored in variable ni. Thus,
µi = µ̂i +

√
3 log t
ni

The algorithm plays the super arm returned by the
oracle and updates the variables ni and µ̂i. In the model, all arms have

4See also Kale et al. (2010) for a theoretical analysis of the slate selection problem,
where the user can select a subset from K possible actions and receive rewards for
the selected actions only. The problem formulation is also inspired by online ad or
news selection.
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bounded support on [0, 1] but with the adjustment µi may exceed 1. If
values above 1 are illegal to the oracle, then they are replaced with 1.

The CMAB approach was inspired by advertising scenario, where
a website contains a set of web pages and has a set of users visiting
the website. An advertiser wants to place an ad on a set of selected
web pages on the site but due to budget constraint, the ads can only
be placed at most k web pages. Each user visits a certain set of pages,
and on each visited page has a certain click-through probability of
clicking the ad on the page but the advertiser does not know these
probabilities. The advertiser thus aims to repeatedly select sets of k
web pages, observe the CTR to learn the click-through probabilities,
and maximize the number of users clicking the ads. In this application,
page/user pairs can be viewed as arms but they are not played one
by one. Instead, these arms form combinatorial structures and in each
round, a set of arms (a super arm) are played together. The reward
structure is not a simple linear function of the outcomes of all played
arms but takes a more complicated form. For example, in the online
advertising scenario, for all page-user pairs with the same user, the
collective reward of these arms is either 1 if the user clicks an ad on at
least one of the pages and 0 if the user does not click any ads on any
page.

In a similar vein, Tang et al. (2014) explore ensemble strategies for
contextual bandit algorithms by aggregating different pulling policies.
This is obtained through creating a meta-bandit paradigm that places
a hyper bandit over the base bandits to explicitly explore/exploit the
relative importance of base bandits based on user feedback. Two algo-
rithms are proposed to address this problem: HyperTS and HyperTSFB.
The idea of these two algorithms is to distribute the trials to the base
bandit policies. Given a set of policies Π = {πi, . . . , πk} and a context
x, both algorithms make two decisions to determine which arm to pull.
First, they need to select a policy from Π and then, based on that
selection, choose the arm a to pull. To address the policy selection
problem, both algorithms leverage non-contextual Thompson sampling.
Generally, in each trial, the algorithms randomly select a policy πi ∈ Π
to maximize the expected reward of policy πi. Each algorithm uses a
different approach to estimating the expected reward.



6.6. Simultaneous Multiple Arms Evaluation 391

HyperTS estimates the expected reward of each policy πi ∈ Π using
Monte Carlo method. More precisely, let x1, . . . , xk be the contexts of
k trials in which πi is selected. x1, . . . , xk are samples drawn from p(x).
For an input context xj , πi pulls the arm aj and receives the reward
ρj , where aj is a sample from p(a = πi(xj) | xj) and ρj is a sample
drawn from p(ρ | xj , aj). Thus, (xj , aj , ρj) is a sample drawn from the
joint distribution p(x, a, ρ), j = 1, . . . , k. The Monte Carlo estimate is
Ê[ρπi ] = 1

k

∑k
j=1 ρj . The rewards ρ1, . . . , ρk ∈ {0, 1} are drawn from the

Bernoulli distribution p(ρ), which is a marginal distribution of p(x, a, ρ).
Therefore, Ê[ρπi ] follows the Beta distribution: Ê[ρπi ] ∼ Beta(1+απi, 1+
βπi), where απi =

∑k
j=1 ρj and βπi = k − απi with α and β being the

parameters of the Beta distribution. For the prior, Beta(1, 1) is used.
The selected policy is the one maximizing ρi.

In HyperTS, the expected reward of each base policy is estimated
only from the feedback when that policy is selected, while the feedback
of the decision made by other policies is not utilized. If the number of
policies in Π is large, then the total number of trials needed to explore
the performance of base policies will also be large, while the total reward
will be smaller. HyperTSFB (HyperTS with shared feedback) improves
the estimation efficiency by fully utilizing every received feedback for
expected reward estimation. Given context x, HyperTSFB requires
each base policy πi ∈ Π to provide the probability of πi pulling arm a.
Then, even though the policy πi is not selected, HyperTSFB can still
utilizes the feedback for x to estimate the expected reward of πi. In the
implementation, a sampling-based method is used to obtain the value of
p(a|x). For each given context x, HyperTSFB is run multiple times and
then p(a|x) is estimated according to the frequency of a being selected.
p(a) is the marginal probability of a being selected, which is simply
approximated by the ratio of a being pulled in all previous trials done
by HyperTSFB.

The two algorithms were compared against LinUCB (Li et al.,
2010a) (Section 6.1.1), Thompson sampling (Chapelle and Li, 2011)
(Section 2.2.1) and ε-greedy (Sutton and Barto, 1998) (Section 2.2) using
the Yahoo! Today news module. In terms of CTR, both algorithms
significantly outperform LinUCB and Thompson sampling. HyperTS
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performs marginally worse than ε-greedy, while HyperTSFB performs
marginally better than ε-greedy.

Stochastic combinatorial semi-bandit (Wen et al., 2015) is another
online learning problem where at each step the user or the system can
select a subset of items subject to combinatorial constraints, and then
observes stochastic weights of these items and receives their sum as a pay-
off. Two algorithms are proposed to solve the combinatorial semi-bandit
problem: Combinatorial Linear Thompson Sampling (CombLinTS) and
Combinatorial Linear UCB (CombLinUCB), which are respectively
motivated by Thompson sampling (Chapelle and Li, 2011) (Section
2.2.1) and LinUCB (Li et al., 2010a) (Section 6.1.1). Both algorithms
maintain a mean vector θ̂ and a covariance matrix M , and use Kalman
filtering to update them. They differ in how to choose the subset of
arms to explore in each round t.

CombLinTS consists of three steps. First, it randomly samples a
coefficient vector θt from a Gaussian distribution. Second, it selects
a subset of arms to explore based on θt and the pre-specified oracle.
Finally, it updates the mean vector θt+1 and the covariance matrixMt+1
based on Kalman filtering.

ComLinUCB also consists of three steps. First, for each arm in the
ground set e ∈ E, it computes an upper confidence bound (UCB) weight
vector ŵet . Second, it computes a set of arms to explore based on ŵet

and the pre-specified oracle. Finally, it updates the mean vector θt+1
and the covariance matrix Mt+1 based on Kalman filtering.

6.7 Summary

This chapter covered major areas of recommender systems where bandit
algorithms have been applied. Bandits have had a major impact in
personalized recommendation, mostly through the application of con-
textual bandits (Section 6.1.1) and Thompson sampling (Section 2.2.1).
Some of the bandit algorithms created in the context of personalized
recommendation have had a major impact beyond its original appli-
cation. In particular, LinUCB (Li et al., 2010a) or its derivatives has
been applied in all areas of information retrieval (as can be attested
by all the remaining chapters of this survey). Graph based bandits is
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another class of algorithms that was established as a result of research
into leveraging knowledge from social connections to create more per-
sonalized recommendation (Section 6.2.1). Other bandit approaches
aimed at efficiency improvements in a recommender system were also
considered, such as faster discovery of relevant features (Section 6.4),
accounting for a limited lifespan of recommended products (Section
6.5), or accounting for the fact that users often select/click on more
than one product at a time (Section 6.6).



7
Other Applications

Previous chapters described areas of information retrieval where ban-
dit algorithms have been widely applied: click models (Chapter 3,
ranking (Chapter 4), ranker evaluation (Chapter 5) and recommender
systems (Chapter 6). In this chapter, we briefly mention other areas of
information retrieval where bandits are gradually making inroads: spe-
cialized short text recommendation and ranking (tweets or comments)
(Section 7.1), multimedia retrieval (Section 7.2), and web-page layout
(Section 7.3).

7.1 Specialized Short Text Recommendation

Mahajan et al. (2012) develop a bandit algorithm that leverages past
comment ratings to rank an article’s comments. Commenting environ-
ments are highly dynamic with new comments and articles arriving
continuously. Additionally, new comments have few, if any, user rat-
ings, and constantly changing content that may have little overlap with
previous comments. Thus, simply ranking comments based on their
predicted rating scores may lead to poor comments being ranked high
and good comments being ranked low because. The problem can be
framed as an exploration–exploitation trade-off and solved with a bandit

394
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approach. A contextual bandit algorithm (Section 6.1.1) called LogUCB
is proposed.

LogUCB estimates average ratings for comments using logistic re-
gression on features. Logistic regression ensures that average ratings
lie in the fixed range [0, 1]. First, a global logistic regression model is
created by pooling comments and user ratings data across past articles.
This model is used to initialize the parameters of the per-article model.
For a given article, a per-article logistic regression model is learned at
regular time intervals taking into consideration features and ratings of
comments given to that article during a specific time period. LogUCB
adopts a UCB-based approach to handle the exploitation-exploration
trade-off. For each comment, it uses Bayesian estimation methods to
compute the mean rating estimate µ and its variance σ2. The UCB for
each comment is calculated as µ + ασ2, where α is a parameter that
controls the variance. The algorithm selects the comments with the
top k UCB values to show to users. The system collects user feedback
(thumbs-up/down ratings) on the displayed comments until there is a
sufficient number of new ratings, at which point a periodic batch update
of the per-article model parameters is performed. In experiments with
a real-life comments dataset from Yahoo! News, LogUCB outperforms
state-of-the-art contextual bandit method LinUCB (Li et al., 2010a) in
terms of click prediction accuracy.

Ueda et al. (2017) tackle the problem of collecting non-geotagged
local tweets via bandits. The aim is to find new users in a specific
location (exploration) and collect tweets from them (exploitation). The
bandit algorithm tries to find such users based on the rewards that are
calculated as the number of tweets a user posts in a specific location.
The users to follow are selected by the ε-greedy algorithm (Sutton and
Barto, 1998) (Section 2.2) based on the largest cumulative proxy reward.
The algorithm collects tweets from selected users over a pre-defined
time-frame. For each collected tweet, a probability that it came from
a given location is estimated. At the end of the time-frame, a proxy
reward for the followed user is calculated as the normalized probability
of the collected tweets.



396 Other Applications

7.2 Multimedia Retrieval

Bandit algorithms have also had limited application in image and music
retrieval. PinView (Auer et al., 2010) is a content-based image retrieval
system that exploits implicit relevance feedback during a search session.
The system is based on LinRel (Auer, 2002) – a contextual bandit
algorithm described in more detail in Section 2.2, which allows the
system to learn a similarity metric between images based on the current
interests of the user.

A similar approach to interactive content-based image retrieval was
proposed in Hore et al. (2015) and Konyushkova and Glowacka (2013).
Hierarchical Gaussian Process bandits (Dorard et al., 2009) (Section
6.1.1) are used to capture the similarity between images. Self-Organizing
Maps (SOM) (Kohonen, 1998) of image features are used as layers in the
bandit hierarchy to improve the efficiency of the algorithm called GP-
SOM. SOM provides model vectors that are treated in the algorithm as
discretization of the input space. The algorithm applies a 2-layer bandit
settings. First, a model vector is selected and then an image is sampled
from among the images associated with a particular model vector. The
selection is repeated K times to obtain K images to present to the
user. Experimental results show that for small values of K, GP-SOM
outperforms LinRel.

Interactive music recommendation can also be formulated as an
exploration-exploitation trade-off. The approach presented in Wang
et al. (2014) and Xing et al. (2014) focuses on audio content and
novelty. A user’s preference Pu can be represented as a linear function
of music audio content of a song x and parameter vector u representing
user preference of different music features: Pu = ux. The novelty of
a particular song decays immediately after listening to it and then
gradually recovers. The novelty recovers following the function: Pc =
1 − z−t/n, where t is the time elapsed since the last listening of the
song, n is a parameter indicating the recovery speed and z is the decay
parameter. The complete user rating model Pl is a combination of user
preferences Pu and the novelty score Pc. The Bayes-UCB algorithm
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(Kaufmann et al., 2012) is used to recommend songs to the user. Bayes-
UCB recommends song l, which maximizes:

l = arg max
l=1...,L

Q(α, λl),

where Q satisfies P[Pl ≤ Q(α, λl)] = α and L is all songs in the database;
α = 1− 1

lt+1 ; and λl denotes p(Pl | Dlt). The set Dlt contains recommen-
dations accumulated up till now and subscript lt indicates the number
of recommendations accumulated so far.

7.3 Web-page Layout

Tang et al. (2013) approach ad layout optimization as an instance of a
contextual multi-armed bandit problem (Langford and Zhang, 2008).
Each of the n possible ad layouts is represented by an arm. When a page
is requested by a user, the ad server is called to fill up all reserved ad
slots. Each slot has a size constraint and an available set of ad formats
to choose from. The ad-server has to choose one of the formats for the
slot and the ads that will be shown within the format. A format may
consist of more than one ad. A click on any ad within the format is
considered a click on the format itself. Every instance to select an ad
format on a page is referred to as an opportunity.

Context for an opportunity is encoded as a feature vector and can
include anything that is known about opportunity i, such as features of
a predictive model or hard constraints e.g., size of the space allocated
for the ads. The context facilitates the selection of a subset of feasible
layouts for each opportunity.

Each opportunity i of a contextual bandit can be decomposed into
three steps: (1) At time t, a context represented as a feature vector x
and reward ρ are drawn from an unknown distribution (xt, ρt) ∼ D. The
context is revealed to the user but the reward is not. (2) Based on a policy
π, the user chooses an arm π(xt), given the revealed context. (3) The
reward ρt is revealed based on the user’s choice. The policy π may be
revised with the data collected for this opportunity. Layout optimization
aims to learn a policy which maximizes the average expected reward
per opportunity, where the reward is defined as a click.
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The problem arises when trying to find the optimal policy as that
would require testing many bandit algorithms on live traffic. However,
off-line replay (exploration scavenging Langford et al., 2008; Li et al.,
2011a)1 can be adapted to provide an accurate estimator for the per-
formance of ad layout policies using only historical data about the
effectiveness of layouts.

Offline replay describes a class of sample estimators S:

Ŝ(π) = 1
T

T∑
t=1

∑
a∈A

ρs(xt)1[π(xt) = s(xt)]wt,a,

where A is a list of layouts (arms), 11[·] is the indicator function, s is a
fixed serving policy π 6= s and wt,a is a normalization weight:

wt,a = 1
P (s(xt) = a | π(xt) = a) .

In the case of LinkedIn ad layout selection problem studied by Tang
et al., the contextual features of an opportunity are the channel (web
page) and the layout size. Each channel and size combination has its
own set of admissible formats – a layout can only be recommended for
one channel and one layout size.

In order to evaluate the replayer estimation framework at scale, it
was implemented in the Map/Reduce framework. The testing event set
was partitioned into several subsets with each reducer handling only
the evaluation for one event subset. Offline evaluation was tested in
two scenarios. One scenario considered static recommendation policies,
where the models never changed during the evaluation. In this scenario,
all models were built before the start of the evaluation. The other
scenario considered dynamic recommendation policies with the models
updated based on the user feedback recorded from the events that
they recommended. The experimental framework was tested with many
bandit algorithms (various versions of ε-greedy (Sutton and Barto, 1998),
UCB (Auer et al., 2002a), and Thompson sampling (Chapelle and Li,
2011)) in the context of a large system, the LinkedIn Ad platform.
Thompson sampling was overall the best policy in the evaluation for

1See Section 4.2 for more details about search engine optimization with offline
evaluation
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ad format selection, considering both the cold-start and warm-start
settings. Additionally, the proposed offline policy evaluation approach
was compared with the online production system to demonstrate its
accuracy. The comparison showed that the normalized reward of the
off-line system was close to the actual value of the revenue per request
obtained in the online production system.

Hill et al. (2017) focus on multivariate optimization of interactive
web pages. Bandit methodology is applied to explore the layout space
efficiently and hill-climbing is used to select optimal content in realtime.
To avoid a combinatorial explosion in model complexity, only pairwise
interactions between page components are considered.

The problem is formally defined as the selection of a layout a of a
web page under a context x in order to maximize the expected value of
a reward ρ, which corresponds to the value of an action taken by a user
after viewing the web page, such as click, signup or purchase. Context
u represents user or session information that may impact a layout’s
expected reward, such as time of day, device type or user history. u and
a are combined to form the final feature vector x. The reward ρ for a
given layout and context depends on a linear scaling of x by a fixed but
unknown vector of weights w.

There are n arms, one per layout. The algorithm proceeds in discrete
time steps t. On trial t, a context ut is generated and a vector xa,t is
revealed for each arm. Thompson sampling (Chapelle and Li, 2011)
selects a layout proportionally to the probability of that layout being
optimal conditioned on previous observations: at ∼ P (a = a? | u, ht−1),
where Ht−1 indicates previous observations up to time t− 1. In practice,
this probability is not sampled directly. Instead, model parameters from
their posterior are sampled and the layout that maximizes the reward
is selected. Weights w are estimated from history Ht−1. In the Bayesian
linear pro-bit regression used in the approach, the model weights are
represented by independent Gaussian random variables, which allows
for efficient sampling.

The proposed approach was deployed to a live production system
to combinatorially optimize a landing page that promotes purchases of
an Amazon service, leading to a 21% increase in purchase rate.
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In Wang et al. (2017c), Thompson sampling (Chapelle and Li, 2011)
is applied for whole-page recommendation. The problem is motivated
by news recommendation portal with six slots to display news articles.
Whole-page recommendations, i.e. selecting six articles from a larger
pool and placing them in the webpage, is a combinatorial problem.
The goal is to find an optimal layout configuration to maximize the
expected total CTR. To model this scenario, the following ordered
combinatorial bandit problem is considered. Given optional context
information, instead of selecting one arm, the learner selects a subset of
k actions from a base set of A actions and displays them in k different
positions from K possible positions. Due to position and layout bias, it
is reasonable to assume that for every article and every position, there
is a CTR associated with the (content/position) pair, which specifies
the probability that a user will click on the content if it is displayed
in a certain position. This setting explicitly models the positions of
the subset of selected arms, hence it is called ordered combinatorial
semi-bandits.

More formally, each round t, the user is presented with a (optional)
context vector ct. In order to take layout information into consideration,
a feature vector xa,l is constructed for each (action/position) pair (a, l),
such that xa ∈ A, and l ∈ {1, 2, . . . , L}. The user chooses n actions from
A to display in n positions. A valid combinatorial subset is a mapping
from n different actions to n different positions, i.e. it is a one-to-one
mapping πt : 1, 2, . . . , n 7→ (A, {1, 2, . . . , L}). Each πt is a superarm.
The user receives reward ρπ,t for each chosen (action, position) pair.
The total reward of round t is the sum of the rewards of each position
n. A modified version of Thompson sampling based on a min-cost
max-flow network is used to select the best superarm at each round t.
Experimental results with the Yahoo! Front Page Webscope datasets
show that the proposed approach outperforms simple explore-exploit
settings, such as ε-greedy and pure exploitation.

7.4 Summary

In this chapter, we provided a brief overview of three areas of information
retrieval where the application of bandit algorithms is still rather rare, i.e.
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short text ranking/recommendation (Section 7.1), multimedia retrieval
(Section 7.2) and web-page layout optimization (Section 7.3). In all
the discussed applications, the best preforming approaches were based
on contextual or Bayesian bandits with Thompson sampling being the
most popular method.



8
Conclusions and Future Directions

This survey covered major applications of bandit algorithms in infor-
mation retrieval and recommender systems. There are two broad areas
where the use of bandits has been particularly prominent: online ranker
evaluation (Chapter 5) and personalization in recommender systems
(Section 6.1), spurring the development of a large number of algorithms
from two “families” of bandit algorithms, i.e. dueling bandits and con-
textual bandits. The user behavioural aspects as well as other practical
considerations, such as advertisers’ requirements or type of system’s
platform, had further impact on the algorithmic development of bandits.
Hence, recently we saw a number of algorithms inspired by users’ click
behaviour in an IR setting (Chapter 3), algorithms that take into con-
sideration the social network of users (Section 6.2), algorithms designed
specifically for short-lived ads or news items (Section 6.5), or mobile
platforms (Section 6.4).

Bayesian bandits, in particular Thompson sampling, is also a very
popular approach applied in virtually all the IR/recommender systems
applications discussed in this survey. Thompson sampling’s popularity
is partly due to its algorithmic simplicity, but largely to its ability to
incorporate the uncertainty about, often idiosyncratic, user behaviour.
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In spite of very practical underpinnings, a great majority of research
into bandits algorithms discussed in this survey focus on theoretical
analysis and simulation experiments with existing datasets. The number
of studies related to practical incorporation of bandits in a real-life com-
mercial systems is still somewhat limited, e.g. content publishing tool
used in Yahoo! (Agarwal et al., 2009) or web-page layout in LinkedIn
(Tang et al., 2013). Similarly, there are only a few studies of information
retrieval systems based on bandit algorithms, such as PinView (Auer
et al., 2010) for image retrieval, or PULP (Medlar et al., 2016) and
SciNet (Ruotsalo et al., 2015) for scientific literature search. These
systems, however, are rather small-scale compared to a real-life com-
mercial system. Thus, one of the challenges is better understanding of
engineering and optimization issues associated with the deployment of
bandit algorithms in large-scale commercial systems.

An important direction for future research is development of in-
teractive learning in the bandit setting. At the heart of the majority
of existing bandit applications is the assumption that the underlying
payoff function is known a priori and so, in principle, it can be maxi-
mized. In many, if not the majority of, real-life applications, however,
the payoff function is not fully known in advance and can only be
estimated via interactions of the system with the user. A recent study
of interactive submodular bandits is one of the first attempts in this
direction (Chen et al., 2017). Another related issue concerns personal-
ization at the individual or even task level (Medlar et al., 2017). Most
of the bandit-based personalization discussed in this survey focus on
personalization through group assignment. However, this approach risks
providing non-personalized or even wrong type of support to users who
do not follow main social trends.
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A
Algorithms and Methods Abbreviations

Abbreviation Full Name
BTM Beat-the-Mean
CAB Context Aware clustering of Bandits
CCB Copeland Confidence Bound

CLUB Cluster of Bandits
CMAB Combinatorial MAB

COFIBA Collaborative Filtering Bandit
CoLin Collaborative Linear Bandit
CTO Closest to origin
CTR Click through rate

CUCB Combinatorial UCB
CW-RMED Copeland Winners Relative Minimum Empirical

Divergence
DBGD Dueling Bandit Gradient Descent
DCM Dependent Click Model

D-CTO Differences CTO
D-TS Double Thompson Sampling

ECW-RMED Efficient CW-RMED
Continued on next page
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Abbreviation Full Name
ERBA Exploitative Ranked Bandits Algorithm

GP Gaussian Process
IBA Independent Bandit Algorithm
IF Interleave Filter
IR Information Retrieval
KL Kullback–Leibrel

LCB Latent Contextual Bandits
Lin Linear

MAB Multi-armed bandit
PBM Position Based Model
PIE Parsimonious Item Exploration

QAC Query Auto-Completion
PMED Permutation Minimum Empirical Convergence
PMF Probabilistic Matrix Factorization
PTS Particle Thompson sampling
RBA Ranked Bandit Algorithm

RBPF Rao-Blackwellized particle filter
RCS Relative Confidence Sampling
REC Ranked Explore and Commit

RMED Relative Minimum Empirical Divergence
RUCB Relative Upper Confidence Bound
SCB Scalable Copeland Bandit

SERP Search Results Page
SOM Self-Organizing Map
SWA Sliding Window Avarage
TS Thompson sampling

UCB Upper Confidence Bound
VB Variational Bayes



B
Symbols

Symbol Meaning
A A list of items
ai ith item in list A
Bt Vector with past observations at time t
Ct User feedback/click at time t

DKL(p‖q) KL divergence between two random variables with
means p and q

d Number of dimensions
E A ground set of items
γ Position discount
Id d× d identity matrix
K A list of K presented items
k Position in list K
κ Covariance/kernel function
l Position in list L

κk Probability of observing item in position k
L Number of items
λ Regularization parameter

Continued on next page
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Symbol Meaning
Mt Positive definite matrix with past observations at

time t
Ne(t) Number of counts of item e at time t
Ot Index of item with weight 0
R Regret
rt Regret at time t
ρ Reward
s Number of observed weights
σ Parameter that controls learning rate

Tt(e) Number of times item e is observed in t steps
t Time/number of steps
θ Parameter vector
w Weight

w(a) Weight of item a

wt(a) Weight of item a at time t
U(e) Upper Confidence Bound of item e

Ut Upper Confidence Bound at time t
u User feature vector
v Termination probability
X Matrix with rows of feature vectors of items
x Item feature vector
Y Column vector of observed weights
Zk Observation at position k
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