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The Multi-Armed Bandit Problem



You are in a casino. There are many
different slot machines (known as ‘one-
armed bandits’, as they are know for
robbing you), each with a lever (an arm).
You think that some slot machines pay out
more than others, so you’d like to maximize
this. You only have a limited amount of
resources – you can pull each arm a limited
number of times. Your goal is to walk out of
the casino with most money.



If you knew which lever would pay out the most,
you would pull that lever all day.

The question is: how do you learn which slot
machine is the best and get the most money in the
shortest amount of time?



Explore – Exploit Dilemma 

You have no initial knowledge about the payoff 
of the machines and so at each trial you face the 
following trade-off:
• Play the machine that has given you the 

highest reward so far (exploit)
• Play other machines in the hope of finding 

one that will give you a higher reward 
(explore) 



Exploration – Exploitation Dilemma

• Online decision making involves a 
fundamental choice:

Exploitation: make the best decision given 
current information
Exploration: gather more information
• The best long-term strategy may involve short-

term sacrifices
• Gather enough information to make the best 

overall decision



Examples
• Online Advertising
Exploit: Show the most successful advert
Explore: Show a new advert
• Restaurant Selection:
Exploit: Go to your favourite restaurant
Explore: Try a new restaurant
• Oil drilling
Exploit: Drill at the best known location
Explore: Drill at a new potential oil field 



Practical Applications

• Dynamic allocation of resources (which 
project to work on given the uncertainty 
about the difficulty and payoff of each project)

• Clinical trials (investigating effects of different 
experimental treatments while minimizing 
patient loss)

• Financial portfolio design
• Adaptive routing (to minimize delays in the 

network)



How to Explore?
• Naïve Exploration

Add noise to a greedy policy
• Optimistic Initialization

Assume the best until proven otherwise
• Optimism in the Face of Uncertainty

Select actions with uncertain values
• Probability Matching

Select actions according to probability they are
best 



The Multi-Armed Bandit

• A multi-armed bandit is a tuple 
• A is a known set of m actions (or arms)
• is an unknown probability 

distribution over rewards
• At each step t, agent selects an action
• The environment generates a reward
• The goal is to maximize cumulative reward

〈A,R〉

Ra (r) = P[r | a]

at ∈ A
rt

rτ
τ=1

t

∑



Regret
The regret is the difference between the sum of 
rewards r obtained so far and the reward sum  
associated with optimal strategy.  
Let be the mean values associated 
with the rewards of each arm.

The regret after t rounds is:

where  is the maximum reward mean. 

µ1,…,µm

ρ = tµ∗ − rττ=1

t
∑

µ∗



Approaches to the Bandit Problem
• Regret is defined in terms of the average reward.
• If we can estimate average reward, then we can minimize 

regret.
• Let’s take the action with the highest average reward:

– Assume two actions (arms)
– Action (arm) 1 has reward of 1 with probability 0.3 and 

otherwise the reward is 0
– Action (arm) 2has reward of 1 with probability 0.7 and 

otherwise has reward 0f 0
– We play the first arm and get reward of 1
- Next, we play the second arm and get reward 0
– Now the average reward of arm 1 is higher than that of arm 2.



Greedy Algorithm

• After playing each arm once and observing the 
reward, we might conclude that the arm 1 gives 
us a better reward and so play for the rest of the 
game.

• The greedy algorithm selects arm with the 
highest value:

• The greedy algorithm can lock onto a suboptimal 
action forever and exploit it forever.

at
∗ = argmax

a∈A
µt (a)



Epsilon-Greedy Algorithm
• With probability 1 –ε select 
• With probability ε select a random action.
• Typically ε = 0.1 but this may vary depending on 

the problem at hand.
• Constant ε ensures minimum regret

• The ε-greedy algorithm continues to explore 
forever, which means it has a linear total regret. 

a = argmax
a∈A

ρ(a)

ρt ≥
ε
A

Δa
a∈A
∑



Regret

If you only explore, then the regret will be linear.
If you never explore, then the regret will be linear.
Is it possible to achieve sublinear total regret?



Sublinear Regret

• Both the greedy algorithm and the ε-greedy 
algorithm have linear regret.

• Is it possible to achieve a sublinear total 
regret?

• Is it possible to explore a lot in the initial stage 
and then gradually move to exploitation as the 
game progresses?



Decaying εt-Greedy Algorithm
• Pick a decay schedule for ε1, ε2, …
• Consider the following schedule:

• Decaying εt-greedy has logarithmic total regret.
• Unfortunately, schedule requires advance knowledge 

of gaps.
• Can we find an algorithm with sublinear regret without 

knowledge of gaps?

c > 0
d = min

a|Δa>0
Δa

εt =min 1,
c | A |
d 2t
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Optimism in Face of Uncertainty

• The problem with the greedy algorithm is that 
it is too certain of its estimates – we should 
not conclude what the average reward of a 
given arm is based on one trial.

• The more uncertain we are about the reward 
of an action (arm), the more important it is to 
explore that action.

• It could turn out to be the best action!



Optimism in Face of Uncertainty

• Which action should we pick?

Which action should we choose?



Optimism in Face of Uncertainty

After observe reward of the blue action, we are less 
uncertain about its value.



Confidence Bounds
• Instead of greedily selecting an action (arm) based on 

one observed reward, we should assume that the 
average reward lies within some confidence interval 
that we can adjust based on the information that we 
have. 

• A confidence interval is a range of values within which 
we are sure the mean lies with a certain probability.

• If we tried an action less often, then our estimated 
reward is less accurate so the confidence interval is 
larger. It shrinks as we get more information (try an 
action more often). 



Lower Bound
• The performance of an algorithm is determined by 

similarity between optimal arm and other arms. 
• Hard problems have similar-looking arms with different 

means.
• This is formally described by the gap Δa and the 

similarity in distributions

Theorem (Lai and Robbins)
Asymptotic total regret is at least logarithmic in number of steps

KL(Ra || Ra∗ )

lim
t→∞

Lt ≥ log t
Δa

KL(Ra || Ra∗ )a|Δa>0
∑



Upper Confidence Bound

• Estimate upper confidence Ut(a) for each action 
value

• Such that μ(a) ≤ μt(a) + Ut(a) with high probability
• This depends on number of times N(a) was selected: 
– Small Nt(a) èlarge Ut(a) (estimated value is uncertain)
– Large Nt(a) èsmall Ut(a) (estimated value is accurate)

• Select action maximizing Upper Confidence Bound
(UCB) at = argmax

a∈A
µt (a)+Ut (a)



Hoeffding’s Inequality 

• How do we calculate the upper confidence bound?

Theorem (Hoeffding’s Inequality)
Let X1, …, Xt be i.i.d. random variables in [0, 1],
and let be the sample mean. ThenXt =

1
τ

Xτ
τ

t

∑

Ρ[Ε[X]> Xt +u]≤ e
−2tu2



Calculating Upper Confidence Bound

• We will apply Hoeffding’s Inequality to rewards of 
the bandit conditioned on selecting action a

• Pick a probability p with true value exceeding UCB
• Now solve for Ut(a)

Ρ[µ(a)> µ̂t (a)+Ut (a)]≤ e
−2Nt (a)Ut (a)

2

e−2Nt (a)Ut (a)
2

= p

Ut (a) =
− log p
2Nt (a)



Calculating Upper Confidence Bound

• Reduce p as we observe more rewards, 
e.g.
• Ensures that we select optimal actions 

as

p = t−4

t→∞

Ut (a) =
2 log t
Nt (a)



UCB1
• This leads to the UCB1 algorithm

• The confidence bound grows with the total number of 
actions taken but shrinks with the number of times a 
particular action has been tried.

• This ensures that each action is tried infinitely often 
but still balances exploration and exploitation.

at = argmax
a∈A

µ(a)+ 2 log t
Nt (a)



UCB1

• For each action a record the average
reward μ(a) and the number of times we
have tried it N(a). We write t for the total
number of actions we have tried so far.
• Try the action that maximizes 
• It is quick and easy to implement.

µ(a)+ 2 log t
Nt (a)



UCB1 Regret Bound

• The UCB algorithm achieves logarithmic total 
regret.

• At time t, the expected total regret is at most:

where 

P.Auer, N. Cesa-Bianchi, P. Fisher: Finite-Time Analysis of the Multiarmed Bandit 
Problem. Machine Learning 47 (2), 2002.
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Δa = µ
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UCB-Tuned
• In practice we can improve the performance of

UCB by replacing its upper confidence bound
with:

σa is the sample variance for each action a 
the factor ¼ is an upper bound on the variance of 
any [0, 1] bounded variable
• UCB-Tuned is not very sensitive to large

differences in response rates

log t
Nt (a)

min 1
4
, σ a +

2 log t
Nt (a)
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Example: UCB vs. ε-Greedy on 10-arm Bandit



Linear Bandits

• What happens if the number of arms is very 
large and we cannot try all of them?

• Take advantage of similarity between arms, 
i.e. playing one arm will give you information 
about similar arms thus reducing the amount 
of exploration required.

• The assumption is that there is a similarity 
structure between arms.

• Each arm is represented as a feature vector.



Linear Bandits
• Consider m arms, m >> T, where every arm a is represented as

a vector xa
• On pulling arm a at time t, we observe reward

Example:

Pulling arm 1 tells us: some information about pulling arm 2, 
everything about pulling arm 3, and nothing about pulling arm 4 

rt = xa
Τω

x1 =
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Bandits and Recommendation



Diverse Rankings with Bandits
• Probabilistic ranking advocates ranking documents in order of

decreasing relevance to a query.
• Result: similar documents ranked at similar positions, while

users may prefer diverse set of results.

• Problem: users click on few results (increased abandonment)



Diverse Ranking

• We want to learn an optimally

diverse ranking of documents for a

given query and maximize user

satisfaction.

• In each round, a user arrives and

an algorithm outputs a list of k
results. The user scans the

documents top-down and clicks on

the first relevant one.

• Each slot i is examined by the user

only if the documents in the higher

slots are not clicked.

Rank 1:  ✗
Rank 2:  ✗
Rank 3: ✗
Rank 4:  ✗
Rank 5: ✓

STOP

Rank 6
…

…

Rank k:



Ranked Bandits
• Run a bandit for each 

rank 
• Each bandit maintains a 

value for every 
document in collection 

• Bandits corresponding 
to each rank are treated 
independently

• If Bj and Bi select the 
same document, then a 
random document is 
selected for rank j

B1 – d1, d2, d3, d4, … dn

B2 – d1, d2, d3, d4, … dn

Bk – d1, d2, d3, d4, … dn

Rank 1: d2 ✗
Rank 2: d4 ✓
Rank k: d1 ✗
B1 – 0, 0, 0, 0, …, 0
B2 – 0, 0, 0, 1, …, 0
Bk – 0, 0, 0, 0, …, 0 



Ranked Bandits Algorithm
• No relevance judgments from experts required for training.

• Accounts for dependencies between documents.

• The algorithms learns a utility value for each document at
each rank, maximizing the probability that a new user of
the search system will find at least one relevant document
within the top k positions.

• Equivalent to an online learning problem with no
distinction between training and testing phases.

R.Kleinberg, F. Radlinski, T. Joachims: Learning Diverse Rankings with Multi-Armed Bandits. ICML 2008.



What if the Number of Documents is Large?

• Bandit algorithms are ideal for online settings with
exploration/exploitation trade-offs but are impractical
at web scales.

• Exploit document similarity and ranking context to
optimize the convergence rate of the bandit algorithm.

• To exploit the context, we can factor in conditional
clickthrough rates (user skips a set of documents) and
correlated clicks (probability that two documents are
ir/relevant to the user).



Ranked Bandits in Metric Spaces
• Document model: web documents are organised into
tree hierarchies, where closer pairs are more similar
and each document x is a leaf in the tree.

• The tree is a topic taxonomy on documents such that
the click event on each subtopic is obtained from that
on the parent topic via probability mutation (distance
between child and parent).

• A. Slivkins, F. Radlinski, S. Gollapudi: Learning Optimally Diverse Rankings Over Large Document
Collections. ICML 2010.

• A. Slivkins, F. Radlinski, S. Gollapudi: Ranked Bandits in Metric Spaces: Learning Diverse Rankings over
Large Document Collections. JMLR 14 (2013).



Extensions to Recommender Systems

• Independent Bandit Algorithm (IBA) (Kohli et 
al. 2013) – based on RBA with reward of 1 
given to any clicked article (RBA gives reward
of 1 to the first clicked article only)

• DynUCB (Nguyen & Lauw 2014) – user
population divided into multiple clusters
based on their interests although no graph
structure is used.



Ads and News Recommendation
1. L. Li et al. A contextual-Bandit Approach 

to Personalized News Article 
Recommendation. WWW 2010

2. O. Chapelle & L. Li. An Empirical 
Evaluation of Thompson Sampling. NIPS 
2011 

1. W. Li et al. Exploration and 
Exploitation in a Performance based 
Contextual Advertising System. 
KDD’10

2. L. Tang et al. Personalized 
Recommendation via Parameter-Free 
Contextual Bandits. SIGIR’15. 



Which article to put on our website?
We have space for only one article on our
website but three candidates.

If we had some features about our users, 
i.e. what type of articles they had clicked, 
the algorithm could take that into account
to find best articles based on their past click
behaviors.



Li, Lihong, Wei Chu, John Langford, and Robert E Schapire. 2010. “A Contextual-Bandit Approach to 
Personalized News Article Recommendation.” In Proceedings of the 19th International Conference 
on World Wide Web, 661–70. ACM.

mean (to exploit)

Variance (to explore)

UCB style



Li, Lihong, Wei Chu, John Langford, and Robert E Schapire. 2010. “A Contextual-Bandit Approach to 
Personalized News Article Recommendation.” In Proceedings of the 19th International Conference on 
World Wide Web, 661–70. ACM.



Similar Approaches

• Laten Contextual Bandits (LCB) (Zhou & Brunskill 2016) 

- in phase one, LCB runs LinUCB on the first j users to 

collect training data and in phase two, LCB trains/re-

trains latent models based on mixture of linear

regressions using the collected data. 

• C2UCB (Qin et al. 2014) – contextual combinatorial

bandits

• CGPrank (Vanchinathan et al. 2014) - exploits prior

information specified in terms of a Gaussian process

kernel function, which allows to share feedback in 

three ways: between positions in a list, between items, 

and between contexts. 





Thompson Sampling



Bayesian Inference



Chapelle O. and Li L. 2011. An empirical evaluation of thompson sampling. In 
Advances in Neural Information Processing Systems. 2249-2257.



Chapelle O. and Li L. 2011. An empirical evaluation of thompson sampling. In 
Advances in Neural Information Processing Systems. 2249-2257.





Online Clustering of Bandits (CLUB)

• CLUB is an approach to content
recommendation based on adaptive clustering
of bandit strategies

• Relevant to group recommendation
• Relies on sequential clustering of users

Gentile, C., Li, S., & Zappella, G. 2014. 
Online clustering of bandits. 
In International Conference on 
Machine Learning. 757-765.



The CLUB Algorithm





COFIBA
• Generalization of Clustering of Bandits (CLUB) 

with co-clustering for collaborative effects

• Explore the collaborative effect that arises due to 
ever-changing interaction of users and products

• Dynamically group users based on items under
consideration and group items based on 
similarity of clusterings induced over users

Li, S., Karatzoglou, A., & Gentile, C. 2016. Collaborative filtering bandits. In Proceedings of the 39th 
International ACM SIGIR Conference on Research and Development in Information Retrieval. 539-548.



Li, S., Karatzoglou, A., & Gentile, C. 2016. Collaborative filtering bandits. In Proceedings of the 39th 
International ACM SIGIR Conference on Research and Development in Information Retrieval. 539-548.



COFIBA: Experimental Results



Collaborative Filtering Approaches

• UCB-VB and UCB-PMF (Nakamura 2014) – UCB 

combined with variational Bayes and stochastic matrix

factorization to recommend promotional mail to users

• FactorUCB (Wang et al. 2017) – similarity of users

incorporated through a weighted graph

• Particle Thompson Sampling for Matrix Factorization
(PTS) (Kawale et al. 2015) – Thompson Sampling

combined with Rao-Blackwellized particle filter.



Recommendations with Limited Lifespan

• Mortal bandits (Chakrabarti et al. 2009) – arms have a 
lifetime after which they expire; the algorithm needs to 
explore constantly

• Rotting Bandits (Levine et al. 2017) – the reward of 
each arm decays as a function of the number of times
it has been pulled

• Multi-objective ranked bandit (Lacerda 2017) –
dynamically prioritizes different recommendation
quality metrics during the life cycle of the user in the
system



Personalizing Exploration-Exploitation 

Medlar et al. A System for Exploratory Search of Scientific Literature. SIGIR 2016. 



LinRel

In each iteration  t, LinRel calculates: 

for each document i in dataset and selects for 
presentation top n documents that maximize:

for some constant c > 0  

ia = ix ⋅ t
TX tX +µI( )

−1

t
TX

X
argmax ia{ ⋅

ty +
c
2 ia }



Study Design

• Simulations: exploration rates to show 
different numbers of “exploratory” documents

• User study: MSc/PhD researchers in Machine 
Learning, 5 ML queries using different 
exploration rates

• Analysis: modelling combined with qualitative 
analysis of user performance data



Results
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“Results are not quite 
satisfactory and about very 

specific definitions. I did not get 
[any] understanding of what 

topics are in this area” “[results are] too scattered and 
many other non-related papers”

“I went over several iterations. 
Results started getting way 
better [over iterations] and 
overall I am very satisfied”



Can we “personalize” the 
exploration level for each 

user for each search 
session?



Approach
Ordinary regression fits a model based on linear
relationships between response variable and
exploratory values



Approach
Ordinary regression fits a model based on linear
relationships between response variable and
exploratory values



Problem
We don’t know apriori optimal exploration rate for
given user and can’t observe their behaviour under
these conditions.



Solution
Instead of using specific exploration rates as the
response variable, we created censored intervals based
on user feedback.



Solution
Instead of using specific exploration rates as the
response variable, we created censored intervals based
on user feedback.



User Study Design

• Random exploration rate
• Participants asked to rate knowledge of topic
• Collect simple metrics: clicks, reading time, etc.
• Participants: 20 MSc students from a CS dept. 

performing two searches
• Data: 1.1 million arXiv documents
• After each search, participants completed a short 

questionnaire



“The search results recommended by the system
contained documents closely related to the initial
search query as well as articles related to other
topics with varying degrees of relevance to the initial
query. Based on the search session that you have just
completed, would you prefer the search results to
contain: a) more articles closely related to the initial
search query; b) more articles related to other topics
with varying degrees of relevance to the initial
search query”
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Experimental Results



Graphical Representation of Model

Self−reported knowledge = 3 4 2
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Model Predictions and User Feedback
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Questions?


