
DATA20021
University of Helsinki, Department of Computer Science

Information Retrieval

Lecture 2: IR Jargon + Boolean Retrieval

Simon J. Puglisi
puglisi@cs.helsinki.fi

Spring 2020

Assessment Structure

• Assessment:
– 1 x Exam

• Assessment:
– Simon will give you 3 or 4 exercise sets (1 per week)

• Submit solutions anytime before the exam to gain up to 10 points
(out of 60) – recommend you do them week to week

• The first exercise set available this evening (will email you)

– Dorota will give you one longer assignment
• Available in the 2nd half of the course, worth 10 points (out of 60)

– Exam is worth 40 points out of 60

• 10 (exercises) + 10 (assignment) + 40 (exam) = 60

Books,…

What you will get out of this course…

• A view under the hood of Search Engines

• A view of the frontiers of Information Retrieval

What you will get out of this course…

• A view under the hood of Search Engines

• A view of the frontiers of Information Retrieval

• Who cares?

What you will get out of this course…

• A view under the hood of Search Engines

• A view of the frontiers of Information Retrieval

• Who cares?

– Search Engines are one of the wonders of the modern world – as

computer scientists you should know how they work

– Search as a tool is an enabling technology all over CS/IT/DS

– Many challenging and interesting open problems in IR

– Web companies are big employers and pay well

16.1: Introduction to Indexing
- Boolean Retrieval model
- Inverted Indexes

21.1: Index Compression
- variable-byte coding
- (Partitioned) Elias-Fano coding (used inside Google)
- (maybe) BitFunnel (a recent thing out of)

23.1: Index Construction
- preprocessing documents prior to search (stemming, et c.)
- building the index efficiently

28.1: Web Crawling
- large scale web search engine architecture

30.1: Query Processing
- scoring and ranking search results
- Vector-Space model

The Next Three Weeks

Outline

• What is Information Retrieval?

• Boolean Retrieval model

• The ubiquitous Inverted Index

Definition of information retrieval

Information retrieval (IR) is finding material (usually

documents) of an unstructured nature (usually text) that

satisfies an information need from within large collections

(usually stored on computers).

– Manning et al, 2008

Another definition of information retrieval

Information retrieval deals with the representation,

storage, organization of, and access to information items.

The representation and organization of items should

provide the user with easy access to the information in

which [they] are interested.

– Baeza-Yates & Ribeiro-Neto, 1999

And another…

Information retrieval (IR) is the study of systems that

manage information items with the aim of helping users

satisfy information needs.

It therefore deals with the way information items should

be represented, stored, and recalled in response to

different information requests.

Challenging Peculiarities

• IR is challenging for two main reasons:

1. Information needs can be hard to specify

• What is the [building near the park by the bank in

East Melbourne] called?

2. Relevance is largely subjective

• I meant Michael [Jordan] not the River [Jordan]

• That [Burberry + Jacket] is so last season.

Ambiguity of Language

• Language is our key means of communication
– With it we can express a limitless range of ideas and meanings:

language is generative.

• However, this broadness leads to complications in IR:
– Polysemy: a word has more than one meaning, e.g. “jaguar”

(or “present” or “plane”)
– Synonymy: multiple different words express the same content,

e.g. do you “save” a file or “write” it? Or “store” it?

Synonymy

• Furnas et al. (1982) ran a series of experiments to

examine the vocabulary mismatch problem, requiring

participants to

– Specify descriptions of verbal objects

– Prepare instructions for the carrying out of various tasks.

– Create keyword descriptions of cooking recipes

– Categorise objects hierarchically

• They found the chance of two people using the same

main content word to describe a subject is only 10-20%

Challenging Peculiarities

• IR is challenging for two main reasons:

1. Information needs can be hard to specify

• What is the [building near the park by the bank in

East Melbourne] called?

2. Relevance is largely subjective

• I meant Michael [Jordan] not the River [Jordan]

• That [Burberry + Jacket] is so last season.

Answers versus Relevance in IR

• We could define an answer to a query as a document
that matches the query according to some formal
criteria: if it contains all the keywords (for instance)

• However, this does not mean the document is a helpful
response for that particular information need…

• What we really want are documents that contain the
information we are seeking
– We want relevant documents.

Relevance

• Relevance can be defined as follows:

A document is relevant if it contains knowledge that

helps the user to resolve their information need

• This definition implies answers do not need not contain

all the required information – a document that helps is

also relevant

Search Process as viewed by an IR researcher…

Answers

Junk

Information

Need

Search

Engine

Query

List of

Matches

DataUser

Relevant?

And also…

• IR is challenging because of the enormous

amounts of data/information involved:

– 16 trillion pages on the web (as of 2016)

– ~5 billion of these are indexed (maybe)

– Terabytes (Petabytes?) of information

– It changes all the time

– Users want answers fast (…good answers fast)

– Clever, highly efficient algorithms and data

structures required

Flavours of IR System

• Web Search (we all use this all the time)

• Site-based searching (Enterprise Search)
– wikipedia.org, www.helsinki.fi, www.amazon.com, …
– Many organisations with a web presence provide some kind of

site-search at their homepage.

• File System Search, Help Utilities
– Facilities like OSX spotlight and Microsoft Word online help are

search engines searching over a small data collection

• Searching with intermediaries
– Phone help-desks rely on search engines to access databases of

problems and solutions - operators must interpret problems
into queries to a search engine.

(Desirable) Characteristics of IR Systems

• Robust in the face of rich, complex data
– Data on the web is ugly: poor authorship, malformed HTML,

multiple files formats, binary data

• Tolerant of searcher input error
– Queries by most users are fairly primitive, contain spelling

errors – just about anything is a valid query

• Able to produce useful output
– This is an informal criteria as results are subjective

Measuring Performance in IR Systems

• Efficiency is an important measure of performance:

how fast can answers be determined, and with what

resources (memory, disk, …)

• Quality of answers is also important. It is easy to fetch

bad answers

IR Effectiveness

• An IR system is said to be effective if it is good at

finding relevant documents in response to queries

• Effectiveness is relative. Some queries are difficult to

resolve, others may have many relevant documents

• Effectiveness is measured by counting the number of

relevant documents retrieved across a set of queries

Retrieval Effectiveness

• Many (many) methods for measuring retrieval

effectiveness have been proposed

– See later lectures by Dorota

• Two key measures are:

)(#
)#(

docsrelevant
retrieveddocsrelevant

recall =

)(#
)#(

docsretrieved
retrieveddocsrelevant

precision =

Inverted Indexes,…

Unstructured data in 1650: Shakespeare

Unstructured data in 1650

• Which plays of Shakespeare contain the words Brutus and
Caesar, but not Calpurnia?

• We could grep all of Shakespeare’s plays for Brutus and
Caesar,

grep 'brutus\|caesar' Othello.txt

then grep the matching files again and throw out the ones
containing Calpurnia.

• Why is grep not the solution?
– Slow (for large collections)
– “not Calpurnia” is non-trivial (well… it almost is)
– Other operations (e.g. find the word Romans “near” countryman)

not necessarily feasible

Term-document incidence matrix

• Entry is 1 if term occurs. Eg: Calpurnia occurs in Julius Caesar.
• Entry is 0 if term doesn’t occur. Eg: Calpurnia doesn’t occur in

The Tempest.

Anthony
and

Cleopatra

Julius
Caesar

The
Tempest

Hamlet Othello Macbeth …

Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0

Mercy 1 0 1 1 1 1
Worser 1 0 1 1 1 0

…

Incidence vectors

• So we have a 0/1 (binary) vector for each term.

• To answer the query Brutus and Caesar and not
Calpurnia:

– Take the vectors for Brutus, Caesar, and Calpurnia
– Complement the vector of Calpurnia
– Do a (bitwise) and on the three vectors

– 110100 and 110111 and 101111 = 100100

0/1 Vector for Brutus

Anthony
and

Cleopatra

Julius
Caesar

The
Tempest

Hamlet Othello Macbeth …

Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0

Mercy 1 0 1 1 1 1
Worser 1 0 1 1 1 0

…

Answers to Query

Anthony and Cleopatra, Act III, Scene ii
Agrippa [Aside to Domitius Enobarbus]: Why, Enobarbus, when Antony

found Julius Caesar dead, he cried almost to

roaring; and he wept when at Philippi he

found Brutus slain.

Hamlet, Act III, Scene ii
Lord Polonius: I did enact Julius Caesar: I was killed

i’ the capitol; Brutus killed me.

Bigger collections

• Consider N = 107 documents, each with about 1000 words

• On average 6 bytes per word, including spaces and
punctuation → size of document collection is about 6 GB

• Assume there are M = 500,000 distinct terms in the
collection

Can’t build the incidence matrix…

• M = 500,000 × 107 = 5 trillion 0s and 1s.

• But the matrix has no more than one billion 1s.

– Matrix is extremely sparse (mostly 0s).

• What is a better representation?

– We only record the positions of the 1s.

Inverted Index

• For each term t, we store a list of all documents

that contain t:

Brutus

Caesar

Calpurnia

…

1 2 4 11 31 45 173

1 2 4 5 6 16 57 132 …

2 31 54

…

174

101

lexicon postings (inverted lists)

Inverted Index Construction

1. Collect the documents to be indexed:

2. Tokenize the text, turning each document into a list

of tokens:

3. Do linguistic processing, producing a list of

normalized words, which are the indexing terms:

4. Index the documents that each term occurs in by

creating an inverted index, consisting of an lexicon

and a set of postings lists (or inverted lists)

Friends, Romans, contrymen. So let it be with Caesar. …

Friends Romans countrymen So …

friend roman countryman so …

Tokenization and preprocessing

• Doc 1. I did enact

Julius Caesar: I was

killed i’ the Capitol;

Brutus killed me.

• Doc 1. I did enact

julius caesar I was

killed in the capitol

brutus killed me

• Doc 2. So let it be

with Caesar. The

noble Brutus hath

told you Caesar

was ambitious:

• Doc 2. so let it be

with caesar the

noble brutus hath

told you caesar

was ambitious

Generate postings

• Doc 1. I did enact julius

caesar I was killed in the

capitol brutus killed me

• Doc 2. so let it be with

caesar the noble brutus hath

told you caesar was

ambitious

term docID

I 1

did 1

enact 1

julius 1

caesar 1

I 1

was 1

killed 1

in 1

the 1

capitol 1

brutus 1

killed 1

me 1

so 2

let 2

it 2

be 2

with 2

caesar 2

the 2

noble 2

brutus 2

hath 2

told 2

you 2

caesar 2

was 2

ambitious 2

Sort postings term docID

I 1

did 1

enact 1

julius 1

caesar 1

I 1

was 1

killed 1

in 1

the 1

capitol 1

brutus 1

killed 1

me 1

so 2

let 2

it 2

be 2

with 2

caesar 2

the 2

noble 2

brutus 2

hath 2

told 2

you 2

caesar 2

was 2

ambitious 2

term docID

ambitious 2

be 2

brutus 1

brutus 2

capitol 1

caesar 1

caesar 2

caesar 2

did 1

enact 1

hath 1

I 1

I 1

in 1

it 2

julius 1

killed 1

killed 1

let 2

me 1

noble 2

so 2

the 1

the 2

told 2

you 2

was 1

was 2

with 2

Create lists, count

document frequency
term docID

ambitious 2

be 2

brutus 1

brutus 2

capitol 1

caesar 1

caesar 2

caesar 2

did 1

enact 1

hath 1

I 1

I 1

in 1

it 2

julius 1

killed 1

killed 1

let 2

me 1

noble 2

so 2

the 1

the 2

told 2

you 2

was 1

was 2

with 2

term doc inv

freq list

ambitious 1 2

be 1 2

brutus 2 1,2

capitol 1 1

caesar 2 1,2

did 1 1

enact 1 1

hath 1 1

I 2 1

in 1 1

it 1 2

julius 1 1

killed 2 1

let 1 2

me 1 1

noble 1 2

so 1 2

the 2 1,2

told 1 2

you 1 2

was 2 1,2

with 1 2

Split the result into a lexicon and a postings file

• For each term t, we store a list of all documents

that contain t:

Brutus

Caesar

Calpurnia

…

1 2 4 11 31 45 173

1 2 4 5 6 16 57 132 …

2 31 54

…

174

101

lexicon postings (inverted lists)

4

8

13

doc frequency == # of docs term occurs in

within doc frequency == # of times term occurs in doc

12 9 33 3

Processing Boolean Queries, …

Simple Conjunctive Query (two terms)

• Consider the query: Brutus AND Calpurnia

• To find all matching documents using inverted index:

1. Locate Brutus in the lexicon

2. Retrieve its inverted list from file

3. Locate Calpurnia in the lexicon

4. Retrieve its inverted list from file

5. Intersect the two inverted lists

6. Return intersection to user

Simple Conjunctive Query (two terms)

• This is linear in the length of the postings lists: O(p+q).
• This only works if postings lists are sorted.

Brutus

Calpurnia

1 2 4 11 31 45 173

2 31 54

174

101

Intersection 2 31

Simple Conjunctive Query (two terms)

Intersect(p, q)

1 answer ← {}

2 while p ≠ null and q ≠ null do

3 if docID(p) = docID(q) then

4 Add(answer , docID(p))

5 p ← next(p)

6 q ← next(q)

7 else if docID(p) < docID(q) then

8 p ← next(p)

9 else

10 q ← next(q)

11 end while

12 return answer

Boolean Queries

• The Boolean retrieval model can answer any query that is a Boolean

expression.

– Boolean queries use and, or and not to join query terms.

– Views each document as a set of terms.

– Is precise: Document matches condition or not.

• Primary commercial retrieval tool for 3 decades

• Many professional searchers (e.g., lawyers) still like Boolean queries

– You know exactly what you are getting

• Many search systems you use are also Boolean: email, Flamma (?),

etc.

• Google lets you use Boolean operators (“must contain …”)

Query Optimization

• What is the best order for query processing?

• Consider a query that is an and of n terms, n > 2

• For each of the terms, get its postings list, then and them
together

• Example query: Brutus AND Calpurnia AND Caesar

Query Optimization

• Example query: Brutus AND Calpurnia AND Caesar

• Simple and effective optimization: Process in order of increasing
frequency

• Start with the shortest postings list, then keep cutting further

• In this example, first Caesar, then Calpurnia, then Brutus

Brutus

Caesar

Calpurnia

1 2 4 11 31 45 173

5 31

2 31 54

174

101

Optimized intersection for conjunctive queries

Intersect({t1, . . . , tn})
1 terms ← SortByIncreasingFrequency({t1, . . . , tn})
2 result ← postings(first(terms))
3 terms ← rest(terms)
4 while terms ≠ null and result ≠ null do

5 result ← Intersect(result, postings(first(terms)))
6 terms ← rest(terms)
7 end while

8 return result

The Lexicon,…

Our friend the Inverted Index

• For each term t, we store a list of all documents
that contain t:

Brutus

Caesar

Calpurnia

…

1 2 4 11 31 45 173

1 2 4 5 6 16 57 132 …

2 31 54

…

174

101

lexicon postings (inverted lists)

Lexicon

• The lexicon is the data structure for storing the

term vocabulary

• Term vocabulary: the data

• Lexicon: the data structure for storing the term

vocabulary

Lexicon as an array of fixed width entries

• For each term, t, we need to store a couple of items:

– document frequency (# of documents containing t)
– pointer to postings list for t
– . . .

• Assume for the time being that we can store this

information in a fixed-length entry

• Assume that we store these entries in an array

Lexicon as an array of fixed width entries

term document

frequency

pointer to

postings list

a 656,265 →
aardvark 65 →
… … …

zulu 221 →
space needed 20 bytes 4 bytes 4 bytes

Lexicon as an array of fixed width entries

• How do we look up a word in this array at query time?

term document
frequency

pointer to
postings list

a 656,265 →
aardvark 65 →
… … …

zulu 221 →
space needed 20 bytes 4 bytes 4 bytes

Lexicon as an array of fixed width entries

• How do we look up a word in this array at query time?
– Binary search – it’s just a sorted array
– O(|t|log|L|) time, where |t| term length and |L| vocab. size

term document
frequency

pointer to
postings list

a 656,265 →
aardvark 65 →
… … …

zulu 221 →
space needed 20 bytes 4 bytes 4 bytes

Faster Lexicons

• Our two main options are hash tables and tries
– Best choice depends on a few factors (TBD)

• Both these options allow us to lookup t in O(|t|) time
(or very close to it)

• Both assume (somewhat) that the lexicon fits in RAM
– If this isn’t the case (and a large part of the lexicon has to

reside on disk) we have other options like B-trees

Hash Tables

• A hash table H[0..n’-1] is (essentially) an array of fixed size n’

• A hash function h(t) maps a (string) term t to an integer in a
desired range 0..n’-1

• Here is the hash function Java uses for String objects:
public int hashCode() {

int h = hash;
if (h == 0 && value.length > 0) {

char val[] = value;

for (int i = 0; i < value.length; i++) {
h = 31 * h + val[i];

}
hash = h;

}
return h;

}

Hash Tables

• A hash table H[0..n’-1] is (essentially) an array of fixed size n’

• A hash function h(t) maps a (string) term t to an integer in a
desired range 0..n’-1

• A hash table uses a hash function to map a term into an index
(entry) in its array: at H[h(t)] we put a pointer to the postings list
for term t (and any other data we need, like document frequency)

h(”brutus”) = i

5

0

1

2

h(”mercy”) = 2

…

8i
…

n’-1

1 2 4 11 …

Hash Tables: collisions

• Ideally, any two different terms t1 ≠ t2 will get mapped to different
integers by the hash function h(t1) ≠ h(t2)

• When this is not the case (i.e. t1 ≠ t2 but h(t1) == h(t2)) we say we
have a collision.
– Provided n’ is big enough relative to |L|, the number of distinct terms we

need to hash, a good hash function will produce relatively few collisions

• The need to resolve collisions is a problem with hash tables in
general (not just when they’re being used as a lexicon)

• We have a few options…

Collision Resolution via Chaining

• |L|/n’ is called the load factor of the hash table

– No matter how good our hash function is, as |L|/n’ → 1 (due to us

putting more terms into the table) collisions will occur

– Collisions cause chains to lengthen and lookup time to increase

– Eventually must rehash everything to a new table with bigger n’

n’

0

1

2

i brutus 8 caesar 13

mercy 5

Collision Resolution via Linear Probing

• If a collision occurs at index i, scan the table until free slot found

h(”caesar”) = i

5

0

1

2

…

8i

…

n’-1

1 2 4 11 …

mercy

brutus

Collision Resolution via Linear Probing

h(”caesar”) = i

5

0

1

2

…

8i

…

n’-1

1 2 4 11 …

mercy

brutus

13caesar

• If a collision occurs at index i, scan the table until free slot found

Collision Resolution via Linear Probing

• If a collision occurs at index i, scan the table until free slot found

• As with chaining, |L|/n’ → 1 means more collisions, more probing,

and slower lookup times

– Additional complication is that our terms are variable length strings

– Chaining hash tables can tolerate load factors > 1, linear probing can’t

h(”caesar”) = i

5

0

1

2

…

8i

…

n’-1

1 2 4 11 …

mercy

brutus

13caesar

Collision Avoidance via Perfect Hashing

• Because the lexicon is fixed (i.e. does not change) for some time
after the collection is indexed (at least until the collection grows
and the index needs to be rebuilt), we can preprocess the lexicon
to derive what is called a perfect hash function for the particular
set of strings it contains

• A perfect hash function is a hash function that has no collisions
– Works only for a specific set of terms, which must be given in advance
– Takes some time to construct, and must be reconstructed if the set of

terms changes

• We may return to perfect hash functions in more detail later in the
course is there is time

Tries

• A trie is a tree structure that stores a set of strings (this set is the

terms in the vocabulary, in our case)

Vocabulary

their

there

this

that

does

did

d

i

d

o

e

s

t

h

e
a

i

st r

e

Tries: Lookups

• To lookup a string in the set, we try to match each successive

character of the string to an edge label in the trie, starting from

the root

Vocabulary

their

there

this

that

does

did

d

i

d

o

e

s

t

h

e
a

i

st r

e

75,045 Nodes store doc. freq.

+ ptr to postings

Tries: Branch structure

• As we walk down the trie during a lookup, at each node we

encounter we need to make a decision about which outgoing

branch to follow: this leads to a space-time trade-off

d

i

d

o

e

s

t

h

e
a

i

st r

e

a b c … e … i … z

Tries: Branch structure

• As we walk down the trie during a lookup, at each node we

encounter we need to make a decision about which outgoing

branch to follow: this leads to a space-time trade-off

d

i

d

o

e

s

t

h

e
a

i

st r

e

a e i

Nice Tries

• Tries support prefix matching much more naturally than

hash tables do

• No need to rehash, but careful implementation needed

to keep space usage down…

– A key design decision is how to implement the search structure

at each node

• Lots of fancy trie implementations out there…

– We might look at one in more detail later in the course

16.1: Introduction to Indexing
- Boolean Retrieval model
- Inverted Indexes

21.1: Index Compression
- variable-byte coding
- (Partitioned) Elias-Fano coding (used inside Google)
- (maybe) BitFunnel (a recent thing out of)

23.1: Index Construction
- preprocessing documents prior to search (stemming, et c.)
- building the index efficiently

28.1: Web Crawling
- large scale web search engine architecture

30.1: Query Processing
- scoring and ranking search results
- Vector-Space model

Next Week

