DATA20021

University of Helsinki, Department of Computer Science

Information Retrieval

Lecture 3: Index Compression

Simon J. Puglisi
puglisi@cs.helsinki.fi

Spring 2020

This Week

21.1:

23.1:

28.1:

30.1:

Index Compression
- unary, gamma, variable-byte coding
- (Partitioned) Elias-Fano coding (used by Go gle, facebook)

Index Construction
- preprocessing documents prior to search (stemming, et c.)
- building the index efficiently

Web Crawling
- large scale web search engine architecture
Query Processing

- scoring and ranking search results
- Vector-Space model

Why compression? (in general)

o Use less disk space (saves money)
o Keep more stuff in memory (increases speed)

e Increase speed of transferring data from disk to
memory (again, increases speed)

- [read compressed data and decompress] is faster than [read
uncompressed data]

e Premise: Decompression algorithms are fast.
- This is true of the decompression algorithms we will use.

\EE R EDES

 Crawl the web, gather a collection of documents

e For each word t in the collection, store a list of all documents containing t:

./ Inverted Index

e Query: blue mittens

blue — 1124 |11(31[45(173 | 174
blunt — 112 |4|5|6|16(57|132|173
mint — 2 | 31|54 | 101

mittens — 114 |5 [11[31]45| 174 | 288

Y YT
lexicon postings

Boolean Retrieval with an Inverted Index

e Query: blue mittens

blue - 112 |4 (113145173 | 174

114 11131145 174 >Intersect lists

mittens - 1 (4|5 (113145 174 | 288

Why does G og use compression?

 We can compress both components of an inverted index

e Today: techniques for compressing the lists
- Lists much bigger than lexicon (factor 10 at least)
- (stuff for lexicon compression later in the course)

e Motivation: if we don’t compress the lists we’ll have to store
them on disk because they’re enormous

e Compression allows us to keep them (or most of them) in
memory. |If decompressing in memory is faster than reading
from disk we get a saving. This is the case with int codes.

e Even if we still have to store some lists on disk, storing them
compressed means we can read them into memory faster at
intersection time

e A key idea for compressing inverted lists is to observe
that elements of L are monotonically increasing, so we
can transform the list by taking differences (gaps):

L =3,7,11,23,29,37,41,...
D(L) = 3,4,4,12,6,8,4,...

« The advantage of doing this is to make the integers
smaller, and suitable for integer codes

- We will then assign smaller integers smaller codes

 We can easily “degap” the list during intersection
- Adding items together as we scan the lists adds little overhead

Simple Conjunctive Query (two terms - no gaps)

¥ ¥ ¥ ¥ ¥ ¥ ¥
BRUTUS — 112 |4 (1131145173 | 174
¥ ¥ ¥
CALPURNIA — 2 [31|54 101
Intersection —> 2 | 31

e This is linear in the length of the postings lists: O(p+q).
o This only works if postings lists are sorted.

Simple Conjunctive Query (two terms -

BRuUTUS — 1111242024128 1
CALPURNIA — 2 (29|23 | 57
Intersection —> 2 | 31

e As we scan each list during intersect work out the
original value of each item by keeping track of the sum
of the gaps

Gap Encoding

inverted
list
the doclIDs ... 283042 283043 283044 283045
gaps . 1 1 1
computer doclDs ... 283047 283154 283159 283202
gaps e 107 5 43
arachnid doclDs 252000 500100

gaps 252000 248100

Variable Length Encoding

What we want:
- For arachnid and other rare terms: use about 20
bits per gap.
- For the and other very frequent terms: use about 1
bit per gap.

In order to implement this, we need to devise
some form of variable length encoding.

- Use few bits for small gaps, many bits for large gaps.

Integer representations...

Plain binary representations of integers

e binary,(n) = binary representation of an integer n
using k-bits.

e binary,(13) = 1101, binary,(13) = 0001101

.

« lIdea for encoding integers: just use minimal binary codes!
- After all, that’s small...

* minimal binary code for 13

Just use binary representations...?

283154, 5, 43, 3

1000101001000010010, 101, 101011, 11

100010100100001001010110101111
- Uhhh...

We have to be able to decompress as well!
- QOur coding scheme must be prefix free
- We need a prefix code

e Our first prefix code for ints is the unary code

e Represents integer n as n ‘0’s with a final ‘1’.
- So the unary code for integer n has length n+1.

- (Note: we could reverse the roles of 0Os and 1s - that is
called a negated unary code)

s

s

s

nary cod
nary cod

nary cod

e for 0is 1
e for 3 is 0001
e for 40 is

001

Elias codes...

Elias y codes

o Our first non-trivial integer code is the y (gamma) code,
discovered by Peter Elias in 1975.

e Represent an integer n > 0 as a pair of selector and offset.

° O{;set is the integer in binary, with the leading bit chopped
off.

- For example 13 — 1101 — 101

« Selector is the length of offset
- For 13 (offset 101), this is 3.
- Encode selector in unary code: 0001.

« Gamma code of 13 is the concatenation of selector & offset:
- 0001, 101 = 0001101.

Elias y codes

e Thinking back, the problem with our earlier “brain wave” of
just using the minimal binary representations was that,
later, we didn’t know the length of each code

4, 43, 3 became 10110101111

e Yy codes solve that problem by prefixing the minimal binary
code with an unambiguous representation of the length of
the minimal binary codes (a unary representation)

0001100000000110101100111

. Bu;cj there is also a further optimization present in gamma
codes...

Elias y codes

 ...the most significant bit of the minimal binary code is
always 1. So we don’t need to store it.

0001100000000110101100111
0001100000000110101100111

e And so now we can reduce the selectors by one bit

0010100000101011011
\ gamma

encoded
sequence

Decoding a Gamma code

e« The y code for 13 is 0001101

- How do we decode this?

e Read 1’s until we hita 0
- 0001 =3
- We have the selector.
- This tells us the humber of bits in the offset.

e Read 3 more bits
- We have the offset (101)

- Put a 1 on the front of the offset and we have the original
number

- 1101 =13

Decoding a Gamma code

 What are the numbers in this y-encoded sequence?
- 00011110000011010100100

Length of a Gamma code

« The length of offset is |log,n]| bits.
« The length of selector is |log,n| + 1 bits,

« So the length of the entire code is 2|log,n|+1 bits.
- So y codes are always of odd length.

ey cdodes are just over twice the size of the minimal binary
code

Variable byte (vbyte) codes...

Variable byte (VB) code

e Developed (for IR) at RMIT - Scholer et al., 2002 (?)
e Used by many commercial/research systems

e Blend of variable-length coding and sensitivity to
memory alignment (they respect byte boundaries)

e |nput: array of integers (gaps)
e Qutput: array of bytes

Variable byte (VB) code

o Dedicate 1 bit in each byte we output (high bit) to be a
continuation bit c.

- 00000000

« |If the gap G fits within 7 bits, binary-encode it in the 7 available
bits and set ¢ = 0.

- Eg. Gap of 29 = 11101 fits in 7 bits so we output: 00011101
- Eg. Gap of 117 = 1110101 fits in 7 bits so we output: 01110101

o Else: set c =1, encode lower-order 7 bits and then use additional
bytes to encode the higher order bits using same algorithm.

- Eg. Gap of 767 = 1011100101 > 7 bits so:
- Put lower 7 bits (1100101) in first byte and set the c bit: 11100101
- We now have the bits 101 to deal with, < 7 bits so output 00000101

o At the end, the continuation bit of the last byte is 0 (c = 0) and the
other bytes is 1 (c = 1). So we know when we have decoded a gap!

Variable byte (VB) code

e Another example:

o 214577

e 110100011000110001

. 0110001 — 10110001
. 0001100 — 10001100
e 1101 — 00001101
o 10110001

° 10001100

« 0000110

« 000110100011000110001 = 214577

VB code examples

doclIDs 824
gaps 824
in binary 1100111000

VB codes 10111000
00000110

VB encoded list:

829
5

101

00000101

215406
214577

1101000110
00110001

10110001

10001101
00001100

101110000000011000000101101100011000110100001100
101110000000011000000101101100011000110100001100

VB code encoding algorithm

VBENCODENUMBER(N)
1 bytes «— {}, 1« 0

2 while n >= 128 do

3 bytes[i] < 128 + (n mod 128)
6 n <« ndiv 128

7 i—i+1

8 end while

9 bytes[i] < n

0 return bytes

VB code decoding algorithm

VBDECODENUMBER(bytestream)

n <« n +d * bytestream[i]
return n

1 n—0,i—0

2 d«— 1

3 while bytestream[i] > 128 do

4 n«—n+d* (bytestream[i] - 128)
5 d«—d*128

6 i—i+1

7 end while

8

9

Other variable length codes

« Instead of bytes, we can also use a different “unit of
alignment”: 32 bits (words), 16 bits, 4 bits (nibbles) etc

o Variable byte alignment wastes space if you have many
small gaps - nibbles do better on those

e Recent work on word-aligned codes that efficiently
“pack” a variable number of gaps into one word

e See Ahn & Moffat 2005; Lemire et al. 2018

Compression of GOV2 collection

data structure size
collection (text + xml, etc) 426.0 GB
collection (text) 23.0GB
T/D incidence matrix 192.5 GB
documents 25 M
lexicon (terms) 35M
postings, 32-bit per entry 22.5 GB
postings, 25-bits per entry 17.2 GB
postings, gamma 8.5 GB
postings, vbyte encoded 10 GB

Document reordering,...

Digression: clustering in postings lists

« When document ids are clustered inside a postings list
we get small gaps values that vbyte and gamma codes
can compress well

e Document ids can become clustered inside postings lists
in at least two ways...

e Firstly, it can be natural
- e.g., When a term is trending (inside Twitter’s inverted index)

 Secondly, we can try to induce it before building index:
give documents containing similar words similar ids
- Common heuristic: order the documents by URL

- Within a domain (say helsinki.fi, ford.com) documents use a
similar vocabulary

Original inverted lists
L1: 13689 12:245609 L3:3679
Original gap values

L1: 232 1 12: 2113 L3:312

Original inverted lists

Document | , . .
identifier | L1: 13689 12:24569 13:3679

mapping
Original gap values

1 —> 1 I

27,9 | L1: 2321 12: 2113 13:312
3 -2 |

4 -7

5—-8

6 -3

/7 —5

8 —>6

9 -4

Original inverted lists

Document . : .
identifier | L1: 13689 L2:24569 L3:3679
mapping
Original gap values

1 -1 I

2,9 L1: 232 1 12:2113 L3: 312

3—>2

4 — 7 B it

5—8 |

6 — 3 5 Reordered inverted lists

/—5 i

8 6 L1: 12346 L2:34789 L3: 2345

9-4

Original inverted lists

Document , . .
identifier L1: 13689 12:24569 13:3679

mapping
Original gap values

1 —>1 I

27,9 | L1: 232 1 12:2113 L3:312
32

4 — 7 et b
5—8 |

6 >3 Reordered inverted lists

/ —5 |
8 6 L1: 12346 L2:34789 L3: 2345

9-4
New gap values

L1: 1112 L2: 1311 L3: 111

Original inverted lists

Document © 11:13689 12:24569 13:3679
mapping
Original gap values
1 -1 I
2,9 L1: 2321 12: 2113 L3: 312
32 larger gaps, less compressible
4 — 7 e
5—8 |
6 >3 Reordered inverted lists
/—5 |
8 6 L1:12346 12:34789 L3: 2345
9 >4

New gap values

L1: 1112 L2: 1311 L3: 111

Original inverted lists

Document © 11:13689 12:24569 13:3679
mapping
Original gap values
1 -1 I
2,9 L1: 2321 12:2113 L3: 312
32 larger gaps, less compressible
4 — 7 e
5—8 |
6 >3 Reordered inverted lists
/—5 |
8 6 L1:12346 12:34789 L3: 2345
9 >4

New gap values

L1: 1112 12: 1311 [3: 111
smaller gaps, better compressible

Original inverted lists

Document . : .
identifier L1: 13689 L12:24569 L3: 3679
mapping
Original gap values
1 -1 I
27,9 | L1: 2321 12: 2113 L3: 312
32 larger gaps, less compressible
4 -7 T ooooooooooooooooooooooo-
58 | | |
g N ; Reordered inverted lists ~20% smaller
8 .6 | 11:12346 12:34789 lists on
9,4 | GOV?2
New gap values COlleCthn
L1: 1112 L2: 1311 L3: 111

smaller gaps, better compressible

Compressing Graphs an
Recursive Graph

ction
Brian Karrer
Facebook
ikabiljo@fb.com briankarrer@fb.co
Sergey Pupyrev Alon Shalita

facebook.

d Indexes with
Bi

Laxman Dhulipala Igor Kabiljo
Carnegie Mellon University Facebook
Idhulipa@cs.cmu.edu
Giuseppe Ottaviano
Facebook Facebook Facebook
ott@fb.com spupyrev@fb.com alon@fb.com
ABSTRACT and results in a higher compression ratio. We stress that the

Graph reordering is a powerful technigue to increase the lo-
cality of the representations of graphs, which can be helpful
in several applications. We study how the technique can be
used to improve compression of graphs and inverted indexes,

We extend the recent theoretical model of Chierichetti et al.

(KDD 2009} for graph compression, and show how it can be
employed for compression-friendly reordering of social net-
works and web graphs and for assigning document identi-
fiers in inverted indexes. We design and implement a novel
theoretically sound reordering algorithm that is based on
recursive graph bisection.

Our experiments show a significant improvement of the
compression rate of graph and indexes over existing heuris-
tics. The new method is relatively simple and allows efficient

success of applying a particular encoding algorithm strongly
depends on the distribution of gaps in an adjacency list: a se-
quence of small and regular gaps is more compressible than
a sequence of large and random ones.

This observation has motivated the approach of assigning
identifiers in a way that optimizes compression. Graph re-
ordering has been successfully applied for social networks [7,
12]. In that scenario, placing similar social actors nearby in
the resulting order yields a significant compression improve-
ment. Similarly, lexicographic locality is utilized for com-
pressing the Web graph: when pages are ordered by URL,
proximal pages have similar sets of neighbors, which re-
sultz in an increased compression ratio of the graph, when
compared with the compression obtained using the original

susnmenle S OB T 4o ansmbdoesh af Sadess mmssesssnmmeisss e e

Elias-Fano encoding,...

Elias-Fano representation

Input is an array of n increasing non-negative integers
(e.g., a postings list) and an upperbound on them, z:

OSXO <x] <X2 <xn_2 <xn_1 SZ

We will represent the sequence in two bit arrays:

— the lower / = max{0,|log(z/n)|} bits of each x; are stored
explicitly and contiguously in the lower-bits array

— the upper bits are stored in the upper-bits array as a
sequence of unary-coded gaps

*E.g,list: 5,8,9, 15, 32 with upperbound 36
— [=max{0,|log(36/5)|} = 2 bits

15

32

15

[=2,z=36

32

15

[=2,z=36

32

1

00

10 00

10 01

11

11

1000 00

15

[=2,z=36

32

00

10

00

10

01

11

11

1000

00

[=2,z=36

15 32
01 10100 |10] 01 11| 11 1000 | 00
L|{01|00 |0l | 11|00

2,z2=136

[

32

15

1000 | 00

11

11

01

10

10 | 00

01

1

o ———
~—

11| 00

L|01]00|O0l

2,z2=136

[

32

15

1000 | 00

11

11

01

10

10 | 00

01

1

o ———
~—

11| 00

L|01]00|O0l

2,z2=136

[

32

15

1000 | 00

11

11

01

10

10 | 00

01

1

o ———
~—

11| 00

L|01]00|O0l

1101 | 000001

01 | 01

U

Size of the Elias-Fano representation

* We have n increasing integers drawn from a universe
of size z

* L contains n items, each of / = |log(z/n)| bits:
— n |log(z/n)| bits

e U contains at most n 1 bits
e The number of Os is at most z/2llog@ml < 2y bits

e Overall <2n + n|log(z/n)] bits

access(i): getting the ith integer in the sequence

9

15 32

01

01

01

000001

11| 00

Finding lower bits is easy:
they are all of the same
known size: / bits each

Lower bits for ith value are
L[Zi..li+I-1]

Implementing L...

* Let’s think for a minute about how we might actually
implement L in (close to) n/ bits

— (assuming [is a factor of 32, and therefore a power of 2)

Array of (n*[/32 + 1) 32-bit ints

\

L 10...1010 | 1111...100 | 1101...01

11011111000010100010111001010001

00001101111100001010001011100101

0000000000000000000000000000001

 Each int contains 32//, [-bit values
— 16 in our example

gettheintL [35/16]

>> (or >>> in Java)

& 3 (because 3 =11 in binary)

access(i): getting the ith integer in the sequence

9

15 32

01

01

01

000001

11| 00

How do we obtain the upper
bits of the ith integer? For
example take i = 3.

Define select(i) = position of
ith 1 in a bitvector

Finding upper bits of it" value

U (01]01{1]01[{000001

01 23 4 56 7809..
\ {

selectg(i) = position of it" ‘1’ jn a bitvector B (counting from 0)

selecty(3) =6 = =--- ’

select(i) gives us the end of difference d

Finding upper bits of it" value

U (01]01{1]01[{000001

01 23 4 56 7809..
\ {

selectg(i) = position of it" ‘1’ jn a bitvector B (counting from 0)

selecty(3) =6 = =--- ’

select(i) gives us the end of difference d

Claim: value of upper bits u; for ith value is: select(i) — i
uz = selecty(3) -3=6-3=3
us = selecty(4)—4=12-4=8

Finding upper bits of it" value

U (01]01{1]01[{000001

01 23 4 56 7809..
\ {

selectg(i) = position of it" ‘1’ jn a bitvector B (counting from 0)

selecty(3) =6 = =--~ g
select(i) gives us the end of difference d

Claim: value of upper bits u; for ith value is: select(i) — i
uz = selecty(3) -3=6-3=3
us = selecty(4)—4=12-4=8

Why!

Finding upper bits of it" value

u [(01{01/1{01]000001
01 23 4 56 789..

We have stored (in U) differences between the upper-bits’ values

u, = sum of differences d, +d, + ... d,

Differences encoded in unary, i.e. d:: d; Os and one 1
sum of differences up to i = num of Os up to select(i)
sum of Os up to select(i) = select(i) — (num of Is up to select(i))

\ }
|

= i, by definition

access(i): summary

u [(01{01/1{01]000001
01 23 4 56 789..

So provided we have select(i), we can access the upper bits
— The lower bits are easy, as we’ve seen

Because we want to access the original integers in left-to-right
order during intersection, we ask select(1), then select(2), et c.

We answer this sequence of queries by scanning U, always

looking for the next 1 bit (the answer to our next select(i))

— Determining the position of the next 1 in a bit array can be done very
fast in practice with word-level tricks

nextGEq(1): finding the next item > 1

Having the ability to do access(i) on the Elias-Fano
representation allows us to implement list intersection

However, Elias-Fano allows us to easily implement a more
powerful operation that can allow us to skip more items in the
list during intersection...

Specifically, nextGEq(1) returns the first (i.e. smallest) item
in the list that is > 1 — this is the next possible element
that can be part of the resulting intersection

This will be on the next Exercise Sheet (with some hints ;-)

Elias-Fano combines strong theoretical guarantees
and excellent practical performance

It is used inside Go gle’s search engine

It’s also used inside Facebook’s graph search facility
(and probably also inside their text search engine)

There are also good public implementations:

— https://qgithub.com/ot/ds2i
— https://github.com/vigna/sux/tree/master/sux

https://github.com/ot/ds2i
https://github.com/vigna/sux/tree/master/sux

Partitioned Elias-Fano encoding,...

* Elias-Fano indexes can sometimes be significantly
bigger than those obtained via other compression

* This inefficiency is caused by E-F’s inability to exploit
clustering in the sequence (where we would have
small gaps)

* In short: Ottaviano and Venturini solve this problem
by partitioning lists into chunks and storing separate
E-F data structures for each chunk

Compression of GOV2 Collection

data structure size
collection (text + xml, etc) 426.0 GB
collection (text) 40.0 GB
T/D incidence matrix 192.5 GB
documents 25 M
lexicon (terms) 35M
postings, 32-bit per entry 22.5 GB
postings, 25-bits per entry 17.2 GB
postings, gamma 8.5 GB
postings, vbyte encoded 10 GB
postings, Elias-Fano encoded 7.42 GB
postings, Paritioned E-F 4.65 GB

Times for AND queries

* Rough numbers estimated from a few papers

— gamma 3.0
— vbyte 2.3
— Elias-Fano .1

— Partitioned E-F [.2

* Partitioned E-F 10% than E-F for OR queries

 We can now create an index for highly efficient Boolean retrieval
that is very space efficient. (Works for other kinds of queries too).

e Only 1-2% of the total size of the collection.
e Only 11-12% of the total size of the text in the collection.
« However, we’ve ignored positional and frequency information.

« Compression can be applied to these components too.

Next Lecture

23.1: Index Construction

- preprocessing documents prior to search (stemming, et c.)
- building the index efficiently

28.1: Web Crawling

- large scale web search engine architecture

30.1: Query Processing
- scoring and ranking search results
- Vector-Space model

Further reading

Anh and Moffat (2005) introduce an nhumber of word-aligned (as opposed to byte-
aligned) binary codes for list compression:

Inverted Index Compression Using Word-Aligned Binary Codes.
Information Retrieval 8(1): 151-166 (2005)

Lemire et al. (2018) describe some fast implementations of vbyte:
Stream VByte: Faster byte-oriented integer compression.
Information Processing Letters 130: 1-6 (2018)

Vigna (2013) shows first successful application of Elias-Fano codes to the inverted index
Quasi-succinct indices.
Proceedings of the Conference on Web Search and Data Mining 2013: 83-92

Venturini and Ottaviano improve Vigna’s scheme via partitioning
Partitioned Elias-Fano indexes. Proceedings of SIGIR 2014: 273-282

Dhulipala et al. (2016) doc id reordering with recursive graph bisection

Compressing Graphs and Indexes with Recursive Graph Bisection.
Proceedings of KDD 2016: 1535-1544

