
DATA20021
University of Helsinki, Department of Computer Science

Information Retrieval

Lecture 3: Index Compression

Simon J. Puglisi
puglisi@cs.helsinki.fi

Spring 2020

16.1: Introduction to Indexing
- Boolean Retrieval model
- Inverted Indexes

21.1: Index Compression
- unary, gamma, variable-byte coding
- (Partitioned) Elias-Fano coding (used by Google, facebook)

23.1: Index Construction
- preprocessing documents prior to search (stemming, et c.)
- building the index efficiently

28.1: Web Crawling
- large scale web search engine architecture

30.1: Query Processing
- scoring and ranking search results
- Vector-Space model

This Week

Why compression? (in general)

• Use less disk space (saves money)

• Keep more stuff in memory (increases speed)

• Increase speed of transferring data from disk to

memory (again, increases speed)

– [read compressed data and decompress] is faster than [read

uncompressed data]

• Premise: Decompression algorithms are fast.

– This is true of the decompression algorithms we will use.

Inverted Indexes

• Crawl the web, gather a collection of documents

• For each word t in the collection, store a list of all documents containing t:

• Query: blue mittens

blue

blunt

mittens
…

1 2 4 11 31 45 173

1 2 4 5 6 16 57 132 173 …

…

174

lexicon postings

…

…

mint 2 31 54 101

1 4 5 11 31 45 174 288

Inverted Index

Boolean Retrieval with an Inverted Index

• Query: blue mittens

blue

mittens

1 2 4 11 31 45 173 174

1 4 5 11 31 45 174 288

Intersect lists
1 4 11 31 45 174

Why does Google use compression?

• We can compress both components of an inverted index

• Today: techniques for compressing the lists

– Lists much bigger than lexicon (factor 10 at least)

– (stuff for lexicon compression later in the course)

• Motivation: if we don’t compress the lists we’ll have to store

them on disk because they’re enormous

• Compression allows us to keep them (or most of them) in

memory. If decompressing in memory is faster than reading

from disk we get a saving. This is the case with int codes.

• Even if we still have to store some lists on disk, storing them

compressed means we can read them into memory faster at

intersection time

• A key idea for compressing inverted lists is to observe

that elements of L are monotonically increasing, so we

can transform the list by taking differences (gaps):

L = 3,7,11,23,29,37,41,…

D(L) = 3,4,4,12,6,8,4,…

• The advantage of doing this is to make the integers

smaller, and suitable for integer codes

– We will then assign smaller integers smaller codes

• We can easily “degap” the list during intersection

– Adding items together as we scan the lists adds little overhead

Simple Conjunctive Query (two terms – no gaps)

• This is linear in the length of the postings lists: O(p+q).
• This only works if postings lists are sorted.

Brutus

Calpurnia

1 2 4 11 31 45 173

2 31 54

174

101

Intersection 2 31

Simple Conjunctive Query (two terms – gaps)

• As we scan each list during intersect work out the

original value of each item by keeping track of the sum

of the gaps

Brutus

Calpurnia

1 1 2 4 20 24 128

2 29 23

1

57

Intersection 2 31

Gap Encoding

inverted
list

the docIDs … 283042 283043 283044 283045 …
gaps … 1 1 1 …

computer docIDs … 283047 283154 283159 283202 …
gaps … 107 5 43 …

arachnid docIDs 252000 500100
gaps 252000 248100

Variable Length Encoding

What we want:

– For arachnid and other rare terms: use about 20

bits per gap.

– For the and other very frequent terms: use about 1

bit per gap.

In order to implement this, we need to devise

some form of variable length encoding.

– Use few bits for small gaps, many bits for large gaps.

Integer representations…

Plain binary representations of integers

• binaryk(n) = binary representation of an integer n

using k-bits.

• binary4(13) = 1101, binary7(13) = 0001101

• Idea for encoding integers: just use minimal binary codes!

– After all, that’s small…

�minimal binary code for 13

Just use binary representations…?

• 283154, 5, 43, 3

• 1000101001000010010, 101, 101011, 11

• 100010100100001001010110101111
– Uhhh…

• We have to be able to decompress as well!
– Our coding scheme must be prefix free
– We need a prefix code

Unary codes

• Our first prefix code for ints is the unary code

• Represents integer n as n ‘0’s with a final ‘1’.
– So the unary code for integer n has length n+1.

– (Note: we could reverse the roles of 0s and 1s – that is
called a negated unary code)

• Unary code for 0 is 1

• Unary code for 3 is 0001

• Unary code for 40 is
001

Elias codes…

Elias γ codes

• Our first non-trivial integer code is the γ (gamma) code,
discovered by Peter Elias in 1975.

• Represent an integer n > 0 as a pair of selector and offset.

• Offset is the integer in binary, with the leading bit chopped
off.
– For example 13 → 1101 → 101

• Selector is the length of offset
– For 13 (offset 101), this is 3.
– Encode selector in unary code: 0001.

• Gamma code of 13 is the concatenation of selector & offset:
– 0001, 101 = 0001101.

Elias γ codes

• Thinking back, the problem with our earlier “brain wave” of

just using the minimal binary representations was that,

later, we didn’t know the length of each code

4, 43, 3 became 10110101111

• γ codes solve that problem by prefixing the minimal binary

code with an unambiguous representation of the length of

the minimal binary codes (a unary representation)

0001100000000110101100111

• But there is also a further optimization present in gamma

codes…

Elias γ codes

• …the most significant bit of the minimal binary code is

always 1. So we don’t need to store it.

0001100000000110101100111

0001100000000110101100111

• And so now we can reduce the selectors by one bit

0010100000101011011

gamma

encoded

sequence

Decoding a Gamma code

• The γ code for 13 is 0001101
– How do we decode this?

• Read 1’s until we hit a 0
– 0001 = 3

– We have the selector.

– This tells us the number of bits in the offset.

• Read 3 more bits
– We have the offset (101)

– Put a 1 on the front of the offset and we have the original
number

– 1101 = 13

Decoding a Gamma code

• What are the numbers in this γ-encoded sequence?

– 00011110000011010100100

Length of a Gamma code

• The length of offset is ⌊log2n⌋ bits.

• The length of selector is ⌊log2n⌋ + 1 bits,

• So the length of the entire code is 2⌊log2n⌋+1 bits.

– So γ codes are always of odd length.

• γ codes are just over twice the size of the minimal binary

code

Variable byte (vbyte) codes…

Variable byte (VB) code

• Developed (for IR) at RMIT – Scholer et al., 2002 (?)

• Used by many commercial/research systems

• Blend of variable-length coding and sensitivity to
memory alignment (they respect byte boundaries)

• Input: array of integers (gaps)
• Output: array of bytes

Variable byte (VB) code

• Dedicate 1 bit in each byte we output (high bit) to be a

continuation bit c.

– 00000000

• If the gap G fits within 7 bits, binary-encode it in the 7 available

bits and set c = 0.

– Eg. Gap of 29 = 11101 fits in 7 bits so we output: 00011101

– Eg. Gap of 117 = 1110101 fits in 7 bits so we output: 01110101

• Else: set c = 1, encode lower-order 7 bits and then use additional

bytes to encode the higher order bits using same algorithm.

– Eg. Gap of 767 = 1011100101 > 7 bits so:

– Put lower 7 bits (1100101) in first byte and set the c bit: 11100101

– We now have the bits 101 to deal with, < 7 bits so output 00000101

• At the end, the continuation bit of the last byte is 0 (c = 0) and the

other bytes is 1 (c = 1). So we know when we have decoded a gap!

Variable byte (VB) code

• Another example:

• 214577

• 110100011000110001

• 0110001 → 10110001

• 0001100 → 10001100

• 1101 → 00001101

• 10110001

• 10001100

• 00001101

• 000110100011000110001 = 214577

VB code examples

docIDs 824 829 215406

gaps 824 5 214577

in binary 1100111000 101 1101000110

00110001

VB codes 10111000

00000110

00000101 10110001

10001101

00001100

VB encoded list:

101110000000011000000101101100011000110100001100

101110000000011000000101101100011000110100001100

VB code encoding algorithm

VBEncodeNumber(n)

1 bytes ← {}, i ← 0

2 while n >= 128 do

3 bytes[i] ← 128 + (n mod 128)

6 n ← n div 128

7 i ← i + 1

8 end while

9 bytes[i] ← n

0 return bytes

VB code decoding algorithm

VBDecodeNumber(bytestream)

1 n ← 0, i ← 0

2 d ← 1

3 while bytestream[i] ≥ 128 do

4 n ← n + d * (bytestream[i] – 128)

5 d ← d * 128

6 i ← i + 1

7 end while

8 n ← n + d * bytestream[i]

9 return n

Other variable length codes

• Instead of bytes, we can also use a different “unit of
alignment”: 32 bits (words), 16 bits, 4 bits (nibbles) etc

• Variable byte alignment wastes space if you have many
small gaps – nibbles do better on those

• Recent work on word-aligned codes that efficiently
“pack” a variable number of gaps into one word

• See Ahn & Moffat 2005; Lemire et al. 2018

Compression of GOV2 collection

data structure size

collection (text + xml, etc) 426.0 GB

collection (text) 23.0 GB

T/D incidence matrix 192.5 GB

documents 25 M

lexicon (terms) 35 M

postings, 32-bit per entry 22.5 GB

postings, 25-bits per entry 17.2 GB

postings, gamma 8.5 GB

postings, vbyte encoded 10 GB

Document reordering,…

Digression: clustering in postings lists

• When document ids are clustered inside a postings list

we get small gaps values that vbyte and gamma codes

can compress well

• Document ids can become clustered inside postings lists

in at least two ways…

• Firstly, it can be natural
– e.g., When a term is trending (inside Twitter’s inverted index)

• Secondly, we can try to induce it before building index:

give documents containing similar words similar ids

– Common heuristic: order the documents by URL

– Within a domain (say helsinki.fi, ford.com) documents use a

similar vocabulary

Original inverted lists

L1: 1 3 6 8 9 L2: 2 4 5 6 9 L3: 3 6 7 9

Original gap values

L1: 2 3 2 1 L2: 2 1 1 3 L3: 3 1 2

Original inverted lists

L1: 1 3 6 8 9 L2: 2 4 5 6 9 L3: 3 6 7 9

Original gap values

L1: 2 3 2 1 L2: 2 1 1 3 L3: 3 1 2

Document
identifier
mapping

1 → 1
2 → 9
3 → 2
4 → 7
5 → 8
6 → 3
7 → 5
8 → 6
9 → 4

Original inverted lists

L1: 1 3 6 8 9 L2: 2 4 5 6 9 L3: 3 6 7 9

Original gap values

L1: 2 3 2 1 L2: 2 1 1 3 L3: 3 1 2

Reordered inverted lists

L1: 1 2 3 4 6 L2: 3 4 7 8 9 L3: 2 3 4 5

Document
identifier
mapping

1 → 1
2 → 9
3 → 2
4 → 7
5 → 8
6 → 3
7 → 5
8 → 6
9 → 4

Original inverted lists

L1: 1 3 6 8 9 L2: 2 4 5 6 9 L3: 3 6 7 9

Original gap values

L1: 2 3 2 1 L2: 2 1 1 3 L3: 3 1 2

Reordered inverted lists

L1: 1 2 3 4 6 L2: 3 4 7 8 9 L3: 2 3 4 5

New gap values

L1: 1 1 1 2 L2: 1 3 1 1 L3: 1 1 1

Document
identifier
mapping

1 → 1
2 → 9
3 → 2
4 → 7
5 → 8
6 → 3
7 → 5
8 → 6
9 → 4

Original inverted lists

L1: 1 3 6 8 9 L2: 2 4 5 6 9 L3: 3 6 7 9

Original gap values

L1: 2 3 2 1 L2: 2 1 1 3 L3: 3 1 2

Reordered inverted lists

L1: 1 2 3 4 6 L2: 3 4 7 8 9 L3: 2 3 4 5

New gap values

L1: 1 1 1 2 L2: 1 3 1 1 L3: 1 1 1

Document
identifier
mapping

1 → 1
2 → 9
3 → 2
4 → 7
5 → 8
6 → 3
7 → 5
8 → 6
9 → 4

larger gaps, less compressible

Original inverted lists

L1: 1 3 6 8 9 L2: 2 4 5 6 9 L3: 3 6 7 9

Original gap values

L1: 2 3 2 1 L2: 2 1 1 3 L3: 3 1 2

Reordered inverted lists

L1: 1 2 3 4 6 L2: 3 4 7 8 9 L3: 2 3 4 5

New gap values

L1: 1 1 1 2 L2: 1 3 1 1 L3: 1 1 1

Document
identifier
mapping

1 → 1
2 → 9
3 → 2
4 → 7
5 → 8
6 → 3
7 → 5
8 → 6
9 → 4

smaller gaps, better compressible

larger gaps, less compressible

Original inverted lists

L1: 1 3 6 8 9 L2: 2 4 5 6 9 L3: 3 6 7 9

Original gap values

L1: 2 3 2 1 L2: 2 1 1 3 L3: 3 1 2

Reordered inverted lists

L1: 1 2 3 4 6 L2: 3 4 7 8 9 L3: 2 3 4 5

New gap values

L1: 1 1 1 2 L2: 1 3 1 1 L3: 1 1 1

Document
identifier
mapping

1 → 1
2 → 9
3 → 2
4 → 7
5 → 8
6 → 3
7 → 5
8 → 6
9 → 4

smaller gaps, better compressible

larger gaps, less compressible

~20% smaller
lists on
GOV2
collection

Elias-Fano encoding,…

Input is an array of n increasing non-negative integers
(e.g., a postings list) and an upperbound on them, z:

0 ≤ x0 < x1 < x2 … < xn-2 < xn-1 ≤ z

We will represent the sequence in two bit arrays:
– the lower l = max{0,⌊log(z/n)⌋} bits of each xi are stored

explicitly and contiguously in the lower-bits array
– the upper bits are stored in the upper-bits array as a

sequence of unary-coded gaps

•E.g., list: 5, 8, 9, 15, 32 with upperbound 36
– l = max{0,⌊log(36/5)⌋} = 2 bits

Elias-Fano representation

5 8 9 15 32

5 8 9 15 32

l = 2, z = 36

5 8 9 15 32

1000 0011 1110 0110 001 00

l = 2, z = 36

5 8 9 15 32

1000 0011 1110 0110 001 00

l = 2, z = 36

5 8 9 15 32

01 00 01 11 00

1000 0011 1110 0110 001 01

L

l = 2, z = 36

5 8 9 15 32

01 00 01 11 00
1 2 2 3 8

1000 0011 1110 0110 001 01

L

l = 2, z = 36

5 8 9 15 32

01 00 01 11 00
1 2 2 3 8

1000 0011 1110 0110 001 01

8 – 33 – 22 – 22 – 11 – 0
L

l = 2, z = 36

5 8 9 15 32

01 00 01 11 00

01 01 1 01 000001

1 2 2 3 8

1000 0011 1110 0110 001 01

8 – 33 – 22 – 22 – 11 – 0
L

U

l = 2, z = 36

Size of the Elias-Fano representation

• We have n increasing integers drawn from a universe
of size z

• L contains n items, each of l = ⌊log(z/n)⌋ bits:
– n ⌊log(z/n)⌋ bits

• U contains at most n 1 bits
• The number of 0s is at most z/2⌊log(z/n)⌋ ≤ 2n bits

• Overall ≤ 2n + n⌈log(z/n)⌉ bits

5 8 9 15 32

01 00 01 11 00

01 01 1 01 000001

1 2 2 3 8

1000 0011 1110 0110 001 01

8 – 33 – 22 – 22 – 11 – 0

access(i): getting the ith integer in the sequence

Finding lower bits is easy:
they are all of the same
known size: l bits each

Lower bits for ith value are
L[li..li+l-1]

U

L

Implementing L…

• Let’s think for a minute about how we might actually
implement L in (close to) nl bits
– (assuming l is a factor of 32, and therefore a power of 2)

10…1010 1111...100 1101…01 … … …

Array of (n*l/32 + 1) 32-bit ints

11011111000010100010111001010001

00001101111100001010001011100101 >> (or >>> in Java)

get the int L_[35/16]

L_

• Each int contains 32/l, l-bit values
– 16 in our example

0000000000000000000000000000001 & 3 (because 3 = 11 in binary)

5 8 9 15 32

01 00 01 11 00

01 01 1 01 000001

1 2 2 3 8

1000 0011 1110 0110 001 01

8 – 33 – 22 – 22 – 11 – 0

access(i): getting the ith integer in the sequence

How do we obtain the upper
bits of the ith integer? For
example take i = 3.
Define select(i) = position of
ith 1 in a bitvector

U

L

0 1 0 1 1 0 1 0 0 0 0 0 1
0 1 2 3 4 5 6 7 8 9 …

1 2 2 3 8

8 – 33 – 22 – 22 – 11 – 0

Finding upper bits of ith value

selectB(i) = position of ith ‘1’ in a bitvector B (counting from 0)

selectU(3) = 6

selectU(i) gives us the end of difference di

U

ui

di

0 1 0 1 1 0 1 0 0 0 0 0 1
0 1 2 3 4 5 6 7 8 9 …

1 2 2 3 8

8 – 33 – 22 – 22 – 11 – 0

Finding upper bits of ith value

selectB(i) = position of ith ‘1’ in a bitvector B (counting from 0)

selectU(3) = 6

selectU(i) gives us the end of difference di

Claim: value of upper bits ui for ith value is: selectU(i) – i
u3 = selectU(3) – 3 = 6 – 3 = 3
u4 = selectU(4) – 4 = 12 – 4 = 8

U

ui

di

0 1 0 1 1 0 1 0 0 0 0 0 1
0 1 2 3 4 5 6 7 8 9 …

1 2 2 3 8

8 – 33 – 22 – 22 – 11 – 0

Finding upper bits of ith value

selectB(i) = position of ith ‘1’ in a bitvector B (counting from 0)

selectU(3) = 6

selectU(i) gives us the end of difference di

Claim: value of upper bits ui for ith value is: selectU(i) – i
u3 = selectU(3) – 3 = 6 – 3 = 3
u4 = selectU(4) – 4 = 12 – 4 = 8

Why?

U

ui

di

0 1 0 1 1 0 1 0 0 0 0 0 1
0 1 2 3 4 5 6 7 8 9 …

1 2 2 3 8

8 – 33 – 22 – 22 – 11 – 0

Finding upper bits of ith value

We have stored (in U) differences between the upper-bits’ values
ui = sum of differences d0 + d1 + … di.

Differences encoded in unary, i.e. di: di 0s and one 1
sum of differences up to i = num of 0s up to select(i)
sum of 0s up to select(i) = select(i) – (num of 1s up to select(i))

U

ui

di

= i, by definition

0 1 0 1 1 0 1 0 0 0 0 0 1
0 1 2 3 4 5 6 7 8 9 …

1 2 2 3 8

8 – 33 – 22 – 22 – 11 – 0

• So provided we have select(i), we can access the upper bits
– The lower bits are easy, as we’ve seen

• Because we want to access the original integers in left-to-right
order during intersection, we ask select(1), then select(2), et c.

• We answer this sequence of queries by scanning U, always
looking for the next 1 bit (the answer to our next select(i))
– Determining the position of the next 1 in a bit array can be done very

fast in practice with word-level tricks

U

ui

di

access(i): summary

• Having the ability to do access(i) on the Elias-Fano
representation allows us to implement list intersection

• However, Elias-Fano allows us to easily implement a more
powerful operation that can allow us to skip more items in the
list during intersection…

• Specifically, nextGEq(i) returns the first (i.e. smallest) item
in the list that is ≥ i – this is the next possible element
that can be part of the resulting intersection

• This will be on the next Exercise Sheet (with some hints ;-)

nextGEq(i): finding the next item ≥ i

• Elias-Fano combines strong theoretical guarantees
and excellent practical performance

• It is used inside Google’s search engine

• It’s also used inside Facebook’s graph search facility
(and probably also inside their text search engine)

• There are also good public implementations:
– https://github.com/ot/ds2i
– https://github.com/vigna/sux/tree/master/sux

https://github.com/ot/ds2i
https://github.com/vigna/sux/tree/master/sux

Partitioned Elias-Fano encoding,…

• Elias-Fano indexes can sometimes be significantly
bigger than those obtained via other compression

• This inefficiency is caused by E-F’s inability to exploit
clustering in the sequence (where we would have
small gaps)

• In short: Ottaviano and Venturini solve this problem
by partitioning lists into chunks and storing separate
E-F data structures for each chunk

Compression of GOV2 Collection

data structure size

collection (text + xml, etc) 426.0 GB

collection (text) 40.0 GB

T/D incidence matrix 192.5 GB

documents 25 M

lexicon (terms) 35 M

postings, 32-bit per entry 22.5 GB

postings, 25-bits per entry 17.2 GB

postings, gamma 8.5 GB

postings, vbyte encoded 10 GB

postings, Elias-Fano encoded 7.42 GB

postings, Paritioned E-F 4.65 GB

• Rough numbers estimated from a few papers
– gamma 3.0
– vbyte 2.3
– Elias-Fano 1.1
– Partitioned E-F 1.2

• Partitioned E-F 10% than E-F for OR queries

Times for AND queries

Summary

• We can now create an index for highly efficient Boolean retrieval
that is very space efficient. (Works for other kinds of queries too).

• Only 1-2% of the total size of the collection.

• Only 11-12% of the total size of the text in the collection.

• However, we’ve ignored positional and frequency information.

• Compression can be applied to these components too.

16.1: Introduction to Indexing
- Boolean Retrieval model
- Inverted Indexes

21.1: Index Compression
- variable-byte coding
- (Partitioned) Elias-Fano coding (used by Google, facebook)

23.1: Index Construction
- preprocessing documents prior to search (stemming, et c.)
- building the index efficiently

28.1: Web Crawling
- large scale web search engine architecture

30.1: Query Processing
- scoring and ranking search results
- Vector-Space model

Next Lecture

Anh and Moffat (2005) introduce an number of word-aligned (as opposed to byte-
aligned) binary codes for list compression:

Inverted Index Compression Using Word-Aligned Binary Codes.
Information Retrieval 8(1): 151-166 (2005)

Lemire et al. (2018) describe some fast implementations of vbyte:
Stream VByte: Faster byte-oriented integer compression.
Information Processing Letters 130: 1-6 (2018)

Vigna (2013) shows first successful application of Elias-Fano codes to the inverted index
Quasi-succinct indices.
Proceedings of the Conference on Web Search and Data Mining 2013: 83-92

Venturini and Ottaviano improve Vigna’s scheme via partitioning
Partitioned Elias-Fano indexes. Proceedings of SIGIR 2014: 273-282

Dhulipala et al. (2016) doc id reordering with recursive graph bisection
Compressing Graphs and Indexes with Recursive Graph Bisection.
Proceedings of KDD 2016: 1535-1544

Further reading

