
DATA20021
University of Helsinki, Department of Computer Science

Information Retrieval

Lecture 4: Index Construction

Simon J. Puglisi
puglisi@cs.helsinki.fi

Spring 2020

16.1: Introduction to Indexing
- Boolean Retrieval model
- Inverted Indexes

21.1: Index Compression
- unary, gamma, variable-byte coding
- (Partitioned) Elias-Fano coding (used by Google, facebook)

23.1: Index Construction
- preprocessing documents prior to search
- building the index efficiently

28.1: Web Crawling
- getting documents off the web at scale
- architecture of a large scale web search engine

30.1: Query Processing
- scoring and ranking search results
- Vector-Space model

Today…

Research Search Engines…

• Terrier: http://terrier.org/
– Lots of features, Java, built and maintained by U. Glasgow

• Anserini: https://github.com/castorini/Anserini
– Lots of features, focus on reproducible experimentation, built on top

of Apache’s Lucene, built and maintained by U. Waterloo
– Heavy use in research due to excellent documentation for replicating

experiments

• Indri/Galago: https://www.lemurproject.org/indri/ and https://w
ww.lemurproject.org/galago.php
– Indri is the C++ predecessor to Galago (Java), maintained by U. Mass

• PISA: https://github.com/pisa-engine/pisa
– Efficiency focus, C++, NYU and RMIT, but origins at the U. Pisa

http://terrier.org/
https://github.com/castorini/Anserin
https://www.lemurproject.org/indri/
https://www.lemurproject.org/galago.php
https://github.com/pisa-engine/pisa

4

Inverted Index

but

heavier

jupiter
…

3

3 5

…

lexicon postings

is 1 3 4 5

2 6

1 3 4 5

1 2 1 1

1 2 1 1

4 2 7 2 2

Document ids

Weights

Position counts

Term
positions

Document frequency
= # docs containing term

Terms, Parsing, Stemming, …

Terms and Documents

• We’ve been looking at a simple Boolean retrieval
system

• Our assumptions have been many, including:
– We know what a document is
– We know what a term is

• Both issues can be complex in reality…

• We have pulled a page off the web…
– What format is the page in? Is there text in it?
– What language is the text in? (if there is text)
– What constitutes a document?

• A page, a paragraph, a sentence?
• Very long documents (books) pose problems

• Once we have worked all that out…

• What constitutes a term?
– How do we define and process the vocabulary of terms of

a collection?

Decisions, decisions…

Jargon

• Word – A delimited string of characters as it
appears in the text

• Term – A “normalized” word
– case
– morphology
– spelling, et c.
– an equivalence class of words

• Token – An instance of a word or term occurring in
a document

Inverted Index Construction

• Input:

• Output:

• Each token is a candidate for a postings entry.

• What are valid tokens to emit?

Friends, Romans, contrymen. So let it be with Caesar. …

friend roman countryman so …

One word or two? (or several)

• Hewlett-Packard
• State-of-the-art
• co-education
• the hold-him-back-and-drag-him-away maneuver
• data base
• San Francisco
• Los Angeles-based company
• cheap San Francisco-Los Angeles fares
• York University vs. New York University

Numbers

• 3/12/91
• 12/3/91
• Mar 12, 1991
• B-52
• 100.2.86.144
• (800) 234-2333
• 800.234.2333

• Older IR systems didn’t index numbers, but generally
it’s a useful feature.

Chinese: No whitespace

Ambiguous Segmentation in Chinese

These two characters can be treated as one word
meaning ‘monk’ or as a sequence of two words
meaning ‘and’ and ‘still’.

Other cases of no whitespace

• Compounds in Dutch and German

• Computerlinguistik → Computer + Linguistik

• Lebensversicherungsgesellschaftsangestellter → leben +
versicherung + gesellschaft + angestellter

• Inuit: tusaatsiarunnanngittualuujunga (I can’t hear very well)

• Finnish, Swedish, Greek, Urdu, many other languages

Arabic Script : Bidirectionality

Arabic Script : Bidirectionality

Unicode allows direction to be encoded

Back to English…

Normalization

• Normalization is the process of canonicalizing tokens so that
matches occur despite superficial differences in character
sequences
– E.g., We want to match U.S.A. and USA

• Need to normalize terms in indexed text as well as query terms
into the same form.

• Most commonly: implicitly define equivalence classes of terms
– window, windows, Windows → window

• Alternatively: do asymmetric expansion
– window → window, windows
– windows → Windows, windows
– Windows (no expansion)

Case folding

• Convert all letters to lower case

• Possible exceptions: capitalized words in mid-sentence
– MIT vs. mit
– Fed vs. fed

• It’s often best to lowercase everything since users will use
lowercase regardless of correct capitalization

Normalization: other languages

• Accents: résumé vs. resume (simple omission of accent)

• Umlauts: Universität vs. Universitaet (substitution with special
letter sequence “ae”)

• Most important criterion: How are users likely to write their
queries for these words?

• Normalization and language detection interact
– PETER WILL NICHT MIT. → MIT = mit
– He got his PhD from MIT. → MIT ≠ mit

More equivalence classing

• Soundex: phonetic equivalence
– Tchebyshev = Chebysheff

• Thesauri: semantic equivalence
– car = automobile

Stop words

• stop words are extremely common words seemingly of little
value in helping select documents matching a user need

• Examples:
– a, an, and, are, as, at, be, by, for, from, has, he, in, is, it, its, of, on, that,

the, to, was, were, will, with

• Stop word elimination used to be standard in older IR
systems.

• But you need stop words for some phrase queries, e.g. “The
Smiths”; “Romeo and Juliet”

• Most web search engines index stop words.

Lemmatization

• Reduce inflectional/variant forms to base form
– Example: am, are, is → be
– Example: car, cars, car’s, cars’ → car
– Example: the boy’s cars are different colors → the boy car be different

color

• Lemmatization implies doing “proper” reduction to dictionary
headword form (the lemma).

• Inflectional morphology (cutting → cut) vs. derivational
morphology (destruction → destroy)

• Lemmatization can be hard to do well, so…

Stemming

• Stemming is a (crude) heuristic process that chops off the
ends of words in the hope of achieving what “principled”
lemmatization attempts to do with a lot of linguistic
knowledge.

• Language dependent

• Example: automate, automatic, automation all reduce to
automat

Porter Algorithm

• Most common algorithm for stemming English
– Results suggest that it is at least as good as other stemming options

• Conventions + 5 phases of reductions

• Phases are applied sequentially

• Each phase consists of a set of commands.
– Sample command: Delete final ement if what remains is longer than 1

character
– replacement → replac
– cement → cement

• Sample convention: Of the rules in a compound command,
select the one that applies to the longest suffix.

Porter stemmer: a few rules

Rule Example
SSES → SS caresses → caress
IES → I ponies → poni
SS → SS caress → caress
S → cats → cat

Three stemmers: a comparison

• Sample text: such an analysis can reveal features that are not easily
visible from the variations in the individual genes and can lead to a
picture of expression that is more biologically transparent and
accessible to interpretation

• Porter stemmer: such an analysi can reveal featur that ar not easili
visibl from the variat in the individu gene and can lead to a pictur of
express that is more biolog transpar and access to interpret

• Lovins stemmer: such an analys can reve featur that ar not eas vis from
th vari in th individu gen and can lead to a pictur of expres that is mor
biolog transpar and acces to interpres

• Paice stemmer: such an analys can rev feat that are not easy vis from
the vary in the individ gen and can lead to a pict of express that is mor
biolog transp and access to interpret

Does stemming improve effectiveness?

• In general, stemming increases effectiveness for some queries,
and decreases effectiveness for others

• Porter Stemmer equivalence class oper contains all of: operate
operating operates operation operative operatives operational

• Queries where stemming hurts: “operations AND research”,
“operating AND system”

What does Google do?

• No stop words (they index every term)
• Normalization
• Tokenization
• Lowercasing
• No Stemming (very probably)
• Non-latin alphabets
• Umlauts
• Compounds
• Numbers

Inverted Index Construction…

• In most commercial indexing systems, the inverted
index is constructed and deployed periodically
– Mostly due to practical issues involved in keeping the

index constantly right up to date (see later)

• Queries continue to be evaluated over an older
version of the index until a new index is deployed

• Important to keep index deployment cycle short: a
stale index may harm search quality
– E.g., results containing deleted pages or missing recent but

relevant ones

• Therefore we need efficient construction methods

Earlier…term docID

I 1

did 1

enact 1

julius 1

caesar 1

I 1

was 1

killed 1

i’ 1

the 1

capitol 1

brutus 1

killed 1

me 1

so 2

let 2

it 2

be 2

with 2

caesar 2

the 2

noble 2

brutus 2

hath 2

told 2

you 2

caesar 2

was 2

ambitious 2

term docID

ambitious 2

be 2

brutus 1

brutus 2

capitol 1

caesar 1

caesar 2

caesar 2

did 1

enact 1

hath 1

I 1

I 1

i’ 1

it 2

julius 1

killed 1

killed 1

let 2

me 1

noble 2

so 2

the 1

the 2

told 2

you 2

was 1

was 2

with 2

term doc inv

freq list

ambitious 1 2

be 1 2

brutus 2 1,2

capitol 1 1

caesar 2 1,2

did 1 1

enact 1 1

hath 1 1

I 2 1

in 1 1

it 1 2

julius 1 1

killed 2 1

let 1 2

me 1 1

noble 1 2

so 1 2

the 2 1,2

told 1 2

you 1 2

was 2 1,2

with 1 2

Sort-based Index Construction

• As we build index, we parse docs one at a time

• The final postings for any term are incomplete until the end

• At ~12+ bytes per postings entry, demands a lot of memory
for large collections

• 5.5 billion postings in GOV2 collection (a tiny part of the .gov
domain) → 60GB of RAM
– (We could actually do GOV2 in memory on a decent server)

• Thus: we need to store intermediate results on disk

Same algorithm for disk?

• Can we use the same index construction algorithm for larger
collections, but by using disk instead of memory?

• Not directly: Sorting T = billions of records on disk is too
slow if not done carefully – too many disk seeks
– Random accesses to disk are at least 10 times slower than

random accesses to RAM
– Different model of computation:

• scans are OK (the hardware prefetches the next chunk of data)
• transferring one large chunk of data from disk to memory is faster

than transferring many small chunks

• We need an external memory sorting algorithm
– We’ll adapt merge sort for this purpose…

“External” sorting algorithm (using few disk seeks)

• For each term create a (termID, docID) pair

• Define a block to consist of 500,000,000 such postings
– We can easily fit that many postings into memory (~6GB)
– We will have ~10 such blocks for GOV2.

• Basic idea of algorithm:
1. Make sorted runs: read in each block, sort it, write it to disk
2. Repeatedly merge adjacent pairs of sorted blocks until only one

remains
3. Collect like terms as before to arrive at final postings lists

Setup

Doc1

Julius Caesar

disk

Doc2

Brutus killed

Doc3

Noble Brutus

Doc4

Caesar with

Doc5

…

…

…

1. All is quiet…

2. Parse collection (+ stem, etc), create (term,docID) pairs

disk

julius d1 caesar d1

caesar d4

with d4
…

noble d3 brutus d3 brutus d2 killed d2

Make sorted runs

1. read as many

items as possible

into memory

brutus d2

caesar d1

julius d1

killed d2

sorted

“run”

disk

julius d1 caesar d1

caesar d4

with d4
…

noble d3 brutus d3 brutus d2 killed d2

julius d1

caesar d1

brutus d2

killed d2

3. write run

back to disk

2. apply fast

in-memory

sorter

End of run creation phase…

1

brutus d3

caesar d4

noble d3

with d4

brutus d2

caesar d1

julius d1

killed d2

disk

…
…

…

• We now have n/m sorted runs, where n is the number of
terms in the collection, and m is the number of term,docID
pairs we can hold in memory

2 n/m…

Merging two runs

sorted runs

to be merged

brutus d3

caesar d4

noble d3

with d4

brutus d2

caesar d1

julius d1

killed d2

brutus d2

brutus d3

caesar d1

caesar d4
julius d1

killed d2

noble d3

with d4

new

merged

run

disk

Two way merge

Input buffers

(in RAM)

Output buffer

disk

…

p1

p2

B2

B1

Select smallest of
B1[p1] and B2[p2]

p0

1. If end of B1 or B2 is reached, then fill buffer
again from corresp. run.

2. As soon as B0 becomes full it is flushed to disk,
then merging continues

B0

Two-way merge

• Two way merge reduces the number of runs we have by a
factor of two (ie. half) each round
– For n items, we thus require log2n rounds
– Each round we push n items through memory

• There are a ways to speed up this basic idea
– We’ll briefly look at two of them

1. Multi-way merge

Input buffer for each run Output buffer

disk

…

Select smallest
unchosen element
for output…

1. Multi-way merge

Input buffer for each run Output buffer

disk

…

Select smallest
unchosen element
for output…

• We now produce the final sorted run
of items in one go: no repeated
merging

• Catch: might not have memory to open
a buffer for each.

• Soln: open as many as you can, then
apply repeated merging

2. Make longer initial runs

• Before we have collected like terms (currently the last thing
we do) if a term t occurs k times in the input, it is repeated k
times in the runs:

– Initial:
(the,1)(cat,1)(the,1)(bat,1)(the,2)(cat,2)(bat,3)(cat,3)(the,4)(the,4)(the,5)(cat,5)
(cat,5)

– Sorted:
(bat,1)(bat,3)(cat,1)(cat,2)(cat,3)(cat,5)(cat,5)(the,1)(the,1)(the,2)(the,4)(the,4)(
the,5)

• But in the final output it occupies only d integers, or one
integer for each document it appears in:

• Final: (bat: 1,3)(cat: 1,2,3,5)(the:1,2,4,5)

Collect like terms during initial run creation

• To exploit this observation, we collect like terms not at the
end, but during the initial run creation phase.
– A bit like applying insertion sort on postings as they are read in

• Because less space is used per term, we can process more of
the collection before being forced to write a run out to disk
– Runs get longer
– Fewer runs
– Less merging to do

• Single-Pass In-Memory Indexing (SPIMI)
– Heinz and Zobel (2003)
– Made even more effective by compression.

Web
repository

Web page Partial indexes

2: Merge the
partial indexes
on the disk into

a full index

1: Flush a partial
index to the disk

each time the
memory is full

One-pass index construction

Inverted Index

A

B

C

D

E

Web
repository

Two-pass index construction

Web
repository

Web page

Term statistics

1: Collect
term

Statistics

p3:
B D E

Two-pass index construction

A

B

C

D

E

Web
repository

Web page

Term statistics

2: Create a
template of
the index

on the disk

1: Collect
term

Statistics

p3:
B D E

Two-pass index construction

A

B

C

D

E

A

B

C

D

E

Inverted Index

Web
repository

Web page

Term statistics

3: Fill in
the index
template

2: Create a
template of
the index

on the disk

1: Collect
term

Statistics

p3:
B D E

p3:
B D E

Two-pass index construction

A

B

C

D

E

A

B

C

D

E

Inverted Index

p3

p3
p3

• In large-scale indexing systems, the index is built and
deployed on thousands of nodes
– Besides being scalable and efficient, the indexing system

needs to tolerate hardware, software and network failures

• Hadoop, a distributed storage and processing
framework for very large data sets, can be used to
create inverted indexes in a scalable, fast, reliable way

• Converting a large document collection into an
inverted index becomes a conceptually simple task…

• Mappers read web pages and emit (term, doc id) pairs
– terms are keys, doc ids are values

• Pairs are partitioned across Reducers according to terms
– doc ids associated with each term are grouped at different reducers

• Reducers output the list of doc ids lists, one term at a time

Mapper

Mapper

Mapper

Reducer

Reducer

(A, p1)
(B, p1)
(C, p1)

(E, p2)
(B, p2)
(D, p2)

(B, p3)
(C, p3)

A: p1
B: p1 p2 p3
E: p2

C: p1 p3
D: p2

p1: A B C

p2: E B D

p3: B C

Construction via Map/Reduce

Updating an Inverted Index…

• Periodically rebuilding the index guarantees a certain
level of freshness

• For the main web search index, a deployment cycle
of a few hours may be considered reasonable

• However, time-sensitive search verticals (e.g. news or
tweet search) have even stricter freshness reqs
– Modifications to page repository (insertions, deletions, updates)

should be reflected in the inverted index as quickly as possible

• Incorporating term-related info from new web pages
into an inverted index is tricky
– Lists are compressed and packed into disk blocks

• There are several solutions, all relying on keeping a
so-called delta index in memory
– Delta index is small inverted index that keeps information

about the most recently added documents
– Once the delta index is grows to big it is written to disk

and a new delta index starts to be built
– Available solutions differ in the way the delta is merged

with the main inverted index…

• Simplest approach: store each delta index as a
separate index on disk beside the main index
– Low index maintenance: just write the delta to disk and start a new one
– Major drawback: inverted lists become fragmented over many small indexes
– Query processing increases since all deltas + main index must be accessed

Memory

Disk Delta
Index

Delta
Index

Old Main Index

No merge

• Update main index in situ
– Requires allocating buffer space at end of every inverted list at construction
– During merge delta entries are appended to these buffer spaces
– Only one delta is maintained, preexisting parts of main index not modified
– Drawbacks: queries/updates compete for resources; buffers eventually fill up

Memory

Disk

Delta
Index

Old Main Index

Incremental update

• Merge delta with main index in memory and write an
up-to-date main index to disk
– Single active idx maintained on disk at all times → query processing unaffected
– However every merge operation requires reading and writing entire index

Memory

Disk

Delta
Index

Old Main Index

Immediate merge

New Main Index

• Variant: maintain multiple generations of deltas
– Delta indexes are lazily merged over time to create larger indexes on disk
– Creates tradeoff between index maintenance cost and query processing cost

Memory

Disk

1st gen.
index

Delta
Index

Old Main Index

Lazy merge

2nd gen.
index

• Besides handling page insertions, the idx maintenance
technique should also handle page deletions

• Naïve option is to maintain ids of deleted pages in an
in-memory structure and filter them from results

• Better approach is to have some kind of garbage
collection mechanism and regularly remove deleted
pages from in-memory and on-disk indexes
– Garbage collection can be performed on-the-fly during

merge operations

16.1: Introduction to Indexing
- Boolean Retrieval model
- Inverted Indexes

21.1: Index Compression
- unary, gamma, variable-byte coding
- (Partitioned) Elias-Fano coding (used by Google, facebook)

23.1: Index Construction
- preprocessing documents prior to search
- building the index efficiently

28.1: Web Crawling
- getting documents off the web at scale
- architecture of a large scale web search engine

30.1: Query Processing
- scoring and ranking search results
- Vector-Space model

Next week…

