
DATA20021
University of Helsinki, Department of Computer Science

Information Retrieval

Lecture 5: Web Crawling

Simon J. Puglisi
puglisi@cs.helsinki.fi

Spring 2020





16.1: Introduction to Indexing
- Boolean Retrieval model
- Inverted Indexes

21.1: Index Compression
- unary, gamma, variable-byte coding
- (Partitioned) Elias-Fano coding (used by Google, facebook)

23.1: Index Construction
- preprocessing documents prior to search
- building the index efficiently

28.1: Web Crawling
- getting documents off the web at scale
- architecture of a large scale web search engine

30.1: Query Processing
- scoring and ranking search results
- Vector-Space model

Today’s lecture…



• Web search engines create web repositories
– They cache the Web on their local machines

• Web repositories provide fast access to copies of 
the pages on the Web, allowing faster indexing and 
better search quality

• A search engine aims to minimize the potential 
differences between it’s local repo and the Web
– Coverage and freshness allow better quality answers
– Very challenging due to fast and continuous evolution of 

the web: huge changes in pages and content every second 



• The Web repository maintains only the most 
recently crawled versions of web pages
– Raw HTML, but compressed, on a filesystem (not a DBMS)
– Also a catalog containing location on disk, size, timestamp

• Mechanisms for both bulk and random access to 
stored pages are provided
– Bulk access is used, e.g., by the indexing system
– Random access for, e.g., query-biased snippet generation



<Some slides on query biased 

snippet generation>



• A web crawler (or (ro)bot or spider) is the subsystem 
of the search engine that downloads pages from the 
Web for storage in the web repository



• A large-scale web crawler is responsible for two 
different tasks that are performed in tandem
– Task1: locate previously undiscovered URLs by iteratively 

following hyperlinks between web pages
ØAim: increase coverage

– Task 2: refetch from the Web contents of pages that are 
currently stored in the repository
ØAim: maintain freshness

• Crawlers are faced with a large number of scalability 
and efficiency challenges, many stemming from 
factors external to the crawlers themselves



• In search engine companies, multiple crawlers are 
operational at a given point in time…

• …by different departments that work independently 
and may serve different purposes
– crawler for main search engine
– some vertical crawlers (for news, say)
– some research/experimental crawlers

• Multiple, uncoordinated web crawlers pose risks
– Saturation of the companies network bandwidth
– Overloading websites with crawl requests (DoS)



• To remedy these coordination problems, search 
engines usually implement a web page fetching system
– shared by multiple crawlers

• WPFS is a gateway between crawlers and the Web
– Whenever a crawler needs to fetch a page from the Web, 

it issues a request to the fetching system with a URL

• In practice, usually composed of two subsystems:
– High-level fetching system (HLFS): between crawlers & the
– Low-level fetching system (LLFS): between the high-level 

fetching system & the Web



Two-level fetching system shared by different crawlers

High-level 
fetching 
system

Web 
repository

Web 
repository

Web 
repository

Research 
crawlers

Main web 
crawlers

Vertical 
crawlers

Low-level 
fetching 
system

robots.txt
cache

Page 
cache

DNS 
cache

Web



• The low-level fetching system implements basic 
network operations, such as resolving DNS of URLs 
to IP addresses and fetching page content from Web

151.101.0.239www.newyorker.com/

https://mxtoolbox.com/SuperTool.aspx?action=a%3anewyorker.com&run=toolpage


Low level process involved in fetching a page from the Web

High-level 
fetching 
system

Low-level 
fetching 
system

DNS 
server

Web 
server

1

2 3

URL

web page
4

0

DNS 
cache

TCP HTTP



• Main input to LLFS is a URL, provided by the HLFS
– URL is parsed to extract web server’s domain name

• DNS server contacted to map domain name to IP address
– DNS mapping can be a bottleneck for web crawlers

– (domain name, IP) pairs are cached locally with an expiry timestamp
– prevents repetitive access to the DNS server to resolve same domain 
– caching significantly reduces the overhead of DNS resolution. 

• With IP address, LLFS opens a TCP connection to web server, 
then an HTTP connection.
– Page content downloaded over HTTP connection is passed to HLFS
– Multiple HTTP requests may be issued to web server over single TCP 

connection



• HLFS implements various crawling mechanisms and policies
applicable to all operational crawlers in the search engine
– Implements throttling mechanism to prevent LLFS from being

flooded with too many download requests

– Implements server-, host-, politeness constraints, to prevent
websites being overloaded by page requests

• HLFS also ensures LLFS establishes only a single connection
to a particular server at any given time
– Assign requested webpages to a download queue

– All requests bound for same website added to same queue
– Each queue to a unique crawling thread

• HLFS usually maintains a cache of recently downloaded pages
– Different crawlers take pages from cache if possible



• High-level fetching system also ensures that the
robots exclusion protocol is obeyed by every crawler

• Many websites publish a robots.txt file

• robots.txt includes instructions guiding crawlers
as to how they should crawl pages on the website

• robots.txt files are maintained in a cache by the
HLFS (with a timestamp) to avoid retrieving it for 
every crawling request



An example robots.txt file.

#robots.txt file

User-agent: googlebot #all services
Disallow: /private/ #disallow this directory

User-agent: googlebot-news #only the news service
Disallow: / #on everything

User-agent: * #all robots
Disallow: /something/ #on this directory

User-agent: * #all robots
Crawl-delay: 10 #wait at least 10 secs

Disallow: /dir1/ #disallow this directory
Disallow: /dir1/myfile.html #allow a subdirectory

Host: www.example.com #use this mirror



• Sometimes robots.txt contains a link to a 
sitemap file

• Sitemaps are XML files created by webmasters to 
inform web crawlers about URLs served at the site
– can include metadata about the served web pages

– e.g., last update time, change frequency, relative importance

• Crawlers can use this information to prioritize
downloads, increase coverage, and improve freshness



An example sitemap.xml file.

<!– sitemap.xml file -->

<?xml version=”1.0” encoding=”UTF-8”?>
<urlset xmlns=”http://www.sitemaps.org/schemas/ 
sitemap/0.9”>

<url>
<loc>http://www.test.com/</loc>
<lastmod>2020-01-25</lastmod>
<changefreq>weekly</changefreq>
<priority>0.65</priority>
</url>

<url>
...
</url>
...

</urlset>



• Having a shared web page fetching system:
– Relieves burden of implementing same functionality in 

different crawlers
– Provides robust/highly-tuned platform for efficient 

downloads (and for avoiding unnecessary downloads)

• Given availability of the low- and high-level fetching 
systems a crawler’s responsibility is reduced to:
– Increasing coverage (via downloading new pages), and
– Refreshing the repository by fetching already downloaded pages

• To this end, the crawler maintains two separate 
(logical) download queues for discovery and refresh
– The main algorithmic challenge for designers is then to devise 

ways to effectively prioritise the URLs in these queues



Extending the Web Repository…



• Crawlers rely on hyperlinks to discover new URLs

• Web pages and underlying hyperlink structure can be 
viewed as a directed graph (the Web graph)
– Each vertex corresponds to a web page
– Hyperlink to another page → directed edge between the 

corresponding vertices of the graph
– A crawler discovers new pages by traversing the vertices 

connected by edges of the graph

• Initially crawler needs some seed web pages that act 
as entry points to the Web graph
– Usually so-called hub pages, which point to a large number 

of potentially important web pages









• The discovery process splits pages on the Web into 
three disjoint sets:
1. Pages whose content is already downloaded by the 

crawler
2. Pages whose URLs are discovered (by following 

hyperlinks pointing to those pages), but whose content is 
not yet downloaded (the frontier of the crawler)

3. Pages whose URLs are not yet discovered



Undiscovered

Discovered
(frontier)

Seed 
page

Downloaded
(Web repository)



• Early web crawlers performed discovery in batches:
– In each session/batch, web pages were downloaded until a 

time limit of page limit was reached
– Motivated by scalability: throughout web crawling, certain 

data structures grow and eventually “choke” the crawler

• Modern large-scale web crawlers perform discovery 
incrementally and continuously…



• In each iteration:
1. Crawler selects a target URL from the URLs currently 

available on its Frontier
2. URL goes to high-level FS for download
3. Returned HTML content goes to Repository Manager, 

which decides if the page enters the repo
4. Content then goes to the Parser

• URLs contained in page are extracted and normalized
• Normaliztion: lowercase, relative to absolute paths, “www” 

prefix added or removed depending on redirections, et c.

5. Normalized URLs are looked up in a data structure that 
maintains all URLs seen so far: URL seen test

6. Previously unseen URLs are added to the data structure, 
expanding the crawler’s Frontier



Seen URLs

URL-seen 
test Parser

Repository 
manager

Web repository

High-level 
fetching 
system

Frontier of crawler
Target URL

Target page

Extracted 
URLs

(Stored pages)
Crawler



• Data structures used in the discovery process are 
updated in an incremental fashion and keep growing 
as new pages are downloaded and links discovered
– Efficiency is important

• Given the vast number of URLs that need to be 
maintained, these data structures will not fit entirely 
in memory

• The URL-seen-test data structure needs to be 
implemented with care…



• A sieve is a “queue with memory”
– Provides enqueue and dequeue primitives (like a queue)
– Each element enqueued will eventually be dequeued
– Sieve guarantees that if an element is enqueued multiple times 

it will only be dequeued once

• Sieves of URLs are fundamental d.s. for crawlers
– Main implementation issue: unbounded exponential 

growth in the number of discovered URLs

• Easy to write enqueued URLs to disk, guaranteeing 
a URL is only returned once requires ad hoc d.s.
– Standard dictionary implementations (hash tables, tries, B-

trees) require too much RAM



disk

RAM

Buffer of 64-bit 
hashes of recently 
seen URLs

“New” URL

File of URL strings in 
discovery order

Sorted 64-bit hashes of 
URLs known to the sieve

hash(…)

…

www.abc.net.au/
www.guardian.co.uk/
www.newyorker.com/
www.theatlantic.com/
…
www.the-tls.co.uk/
www.newyorker.com/

… …

www.newyorker.com/



disk

RAM

Buffer of 64-bit 
hashes of recently 
seen URLs

“New” URL

File of URL strings in 
discovery order

Sorted 64-bit hashes of 
URLs known to the sieve

hash(…)

…

… …

www.newyorker.com/

www.abc.net.au/
www.guardian.co.uk/
www.newyorker.com/
www.theatlantic.com/
…
www.the-tls.co.uk/
www.newyorker.com/
…
newyorker.com/podcast



disk

RAM

Buffer of 64-bit 
hashes of recently 
seen URLs

File of URL strings in 
discovery order

Sorted 64-bit hashes of 
URLs known to the sieve

…

… …

www.abc.net.au/
www.guardian.co.uk/
www.newyorker.com/
www.theatlantic.com/
…
www.the-tls.co.uk/
www.newyorker.com/
…
newyorker.com/podcast



disk

RAM

Buffer of 64-bit 
hashes of recently 
seen URLs

File of URL strings in 
discovery order

Sorted 64-bit hashes of 
URLs known to the sieve

…

… …

www.abc.net.au/
www.guardian.co.uk/
www.newyorker.com/
www.theatlantic.com/
…
www.the-tls.co.uk/
www.newyorker.com/
…
newyorker.com/podcast

…

Sort hashes
(indirectly)



disk

RAM

Buffer of 64-bit 
hashes of recently 
seen URLs

File of URL strings in 
discovery order

Sorted 64-bit hashes of 
URLs known to the sieve

…

… …

www.abc.net.au/
www.guardian.co.uk/
www.newyorker.com/
www.theatlantic.com/
…
www.the-tls.co.uk/
www.newyorker.com/
…
newyorker.com/podcast

…

Sort hashes
(indirectly)



disk

RAM

Buffer of 64-bit 
hashes of recently 
seen URLs

File of URL strings in 
discovery order

Sorted 64-bit hashes of 
URLs known to the sieve

…

… …

www.abc.net.au/
www.guardian.co.uk/
www.newyorker.com/
www.theatlantic.com/
…
www.the-tls.co.uk/
www.newyorker.com/
…
newyorker.com/podcast

…

Sort hashes
(indirectly)



disk

RAM

Buffer of 64-bit 
hashes of recently 
seen URLs

File of URL strings in 
discovery order

Sorted 64-bit hashes of 
URLs known to the sieve

…

… …

www.abc.net.au/
www.guardian.co.uk/
www.newyorker.com/
www.theatlantic.com/
…
www.the-tls.co.uk/
www.newyorker.com/
…
newyorker.com/podcast

…

Sort hashes
(indirectly)

Merge sorted hashes 
with those on disk, 
noting duplicates

…



disk

RAM

Buffer of 64-bit 
hashes of recently 
seen URLs

File of URL strings in 
discovery order

Sorted 64-bit hashes of 
URLs known to the sieve

…

… …

www.abc.net.au/
www.guardian.co.uk/
www.newyorker.com/
www.theatlantic.com/
…
www.the-tls.co.uk/
www.newyorker.com/
…
newyorker.com/podcast

…

Sort hashes
(indirectly)

…

Remove URLs of 
duplicate hashes

Merge sorted hashes 
with those on disk, 
noting duplicates



disk

RAM

Buffer of 64-bit 
hashes of recently 
seen URLs

File of URL strings in 
discovery order

Sorted 64-bit hashes of 
URLs known to the sieve

…

… …

www.abc.net.au/
www.guardian.co.uk/
www.newyorker.com/
www.theatlantic.com/
…
www.the-tls.co.uk/
www.newyorker.com/
…
newyorker.com/podcast

…

Sort hashes
(indirectly)

…

Remove URLs of 
duplicate hashes

Merge sorted hashes 
with those on disk, 
noting duplicates

URLs remain 
in the order 
they were 
discovered



• All operations in the sieve require only sequential 
(i.e. scanning) access to all files involved
– Scanning disks is efficient due to continuous disk head 

movement and hardware prefetching



• Points of note…

• 64-bit fingerprints can give rise to collisions with 
significant probability when crawling more than a 
few hundred billion URLs per crawler
– Bigger fingerprint sizes OK, but complicate 

implementation

• Hashes stored on disk are just sorted (64-bit) 
integers and so can be compressed with integer 
codes, such as those we used for inverted index 
compression (Elias-Fano, etc.) to speed up scanning



• Another implementation issue is about the order in 
which pages are downloaded from the Web
– Random order
– Breadth-first order is common (the order in which the 

URLs are discovered by the crawler)

• From the perspective of the search engine, some 
web pages are more valuable than others
– Commercial web crawlers employ URL prioritization 

strategies to download important pages earlier, resulting 
in a higher-quality web repository and search results

• Two complementary approaches to measure page 
quality…



• 1st Exploit the connectivity of pages in the web 
graph.
– In degree (# of pages that link to page) is simple measure



• 1st Exploit the connectivity of pages in the web 
graph.
– In degree (# of pages that link to page) is simple measure
– PageRank is a well-known spin on this idea

Source: Wikipedia



• 2nd URL prioritization approach is more direct…

• Measure the potential impact the page would make
on the search result quality or the users’ 
engagement with the search engine

• Web-centric (e.g. link-based) and user-centric 
importance measures can be combined into a single 
importance measure using proper weights



Undiscovered

Discovered
(frontier)

Seed 
page

Downloaded
(Web repository)

A

B C D



Refreshing the Web Repository…



• URL-seen test constrains every web page to be downloaded 
at most once, implying that as the content of the pages on the 
Web change, some repository pages become stale

• Having out of date pages may lead to degradation of the 
quality of search engine results

• Crawlers cope with this problem by selectively refetching
pages over time – a process known as refreshing
– Refreshing decisions are non-trivial (because…)
– Only way to determine if page’s content has changed is to download it
– Not refreshing a page leads to staleness, refreshing an unmodified page 

wastes resources



• In what order should we refresh pages?
– Random? Naive.
– Refresh important pages first?

• Using link quality or high search impact
• Need to be careful not to completely ignore some pages

– Refresh based on age of page in repo?
• Maintains average freshness

– According to page longevity?
• i.e. How often the page is updated
• Maybe avoid some redundant downloads this way
• Prioritize medium longevity: intuition is high longevity pages don’t 

require being refreshed so often, low ones turn stale too quickly



PageRank 0.0003 0.0007 0.0002 0.0001
Average daily click count 47 332 2 1974
Last download time 2 hours ago 1 day ago 8 days ago 6 hours ago
Estimate update frequency daily never per minute yearly

A B C D

• Four pages in the repo: A, B, C, and D

• Refreshing based on:
– Link quality would refresh B first (highest PageRank)
– Search impact would refresh D first (most clicks)
– Age-based would refresh C first (it has the oldest copy in the repo)
– Longevity: A, because B and D have too high longevity, C too low



• Refreshing may be implemented in a similar way to 
importance-based URL prioritization

• A number of disk-based queues support scheduling 
of pages for refreshing
– Each page is assigned to queue according to the estimated 

utility of refreshing the page
– Once a page is removed from a queue and refreshed, it is

reinserted back to the tail of the same queue
– Queues are periodically recreated to reflect changes in 

estimated page utility



Distributed Web Crawling…



Faster Crawlers are Better Crawlers

• Obtaining high coverage of the Web and maintaining 
freshness of the web repository requires sustaining high page 
download speeds – the most important efficiency objective 
for a crawler

• If a crawler can download pages faster it can cope better with 
the growth and evolution of the Web…

• …and so can achieve a higher web coverage and page 
freshness, perhaps with some positive impact on search 
quality as well



Multi-threaded Crawling

• In its simplest form, the low-level fetching system can be 
implemented as a single thread that fetches one page at a time

• The speed at which pages are downloaded can be increased 
by simply running more fetcher threads and downloading 
pages concurrently (multi-threaded crawling)

• Typically, a single crawling node can accommodate ~100 
fetcher threads, each handling an HTTP connection to a 
different web server
– Using more threads results in too much context switching in

the CPU and does not speed things up further



Distributed Crawling

• Network bandwidth is the main bottleneck for a well-
implemented crawler

• Usually a single machine and multi threading is not sufficient 
to saturate the network bandwidth

• Therefore, large-scale web crawlers employ clusters (a few 
hundred nodes) in order to utilize the network bandwidth as 
much as possible



Distributed Crawling: Redundancy

• Given a robust crawler that runs on a single node, it is 
relatively easy to build a parallel one over many nodes
– At an extreme, crawling nodes can work completely

independently
– Easy to implement, but results in lots of redundant downloads

• One way to eliminate redundancy is to partition the space of 
URLs among crawling nodes (firewall mode)
– Hash URLs - each node handles a range of hash values
– Given a uniform hash function, expect balanced workload
– Guarantees each page will be downloaded at most once





URLs partitioned over nodes in firewall mode



Distributed Crawling: Coordination

• Lack of coordination in firewall mode means that links whose 
source and destination pages are assigned to different nodes 
cannot be followed by any node
– Some pages will never be discovered: loss of coverage



URLs partitioned over nodes in firewall mode

X



Distributed Crawling: Coordination

• Lack of coordination in firewall mode means that links whose 
source and destination pages are assigned to different nodes 
cannot be followed by any node
– Some pages will never be discovered: loss of coverage

• To solve the discoverability problem: follow a link (only one
hop) even when its destination URL is assigned to another 
node (cross-over mode)
– Solve coverage issue of firewall mode
– Reintroduces redundancy: some pages may be downloaded 

multiple times by different nodes



URLs partitioned over nodes in firewall mode

Undiscovered page in 
firewall mode
Duplicate crawled page 
in cross-over mode

X

X

D

D

D

D

D

D



Distributed Crawling: Exchange Mode

• The solution, known as exchange mode, eliminates coverage 
and redundancy issues

• Discovered non-local links are communicated to the crawling 
nodes responsible for fetching them

• Volume of links needing to be communicated over the 
network can be significantly reduced by partitioning based on 
domain names instead of URLs
– Links found in a website are highly likely to link to pages also 

inside that website
– Another optimization: communicate links in batches



Coordination issues in distributed web crawling illustrated by a web 
graph partitioned over three crawling nodes.

Undiscovered page in 
firewall mode
Duplicate crawled page 
in cross-over mode
Link communicated in 
exchange mode

X

X

D

D

D

D

D

D



Factors Affecting Crawling 
Performance…



Obstacles for Web Crawlers

• The Web poses various obstacles that can negatively affect 
the performance of web crawlers

• Some of these obstacles stem from the malicious intent of 
website owners

• Well-known examples include: delay attacks, spider traps, and 
link farms

• Although there is no malicious intent involved, certain other 
situations may also affect crawling performance (such as 
website mirroring)



Delay Attack

Is this a web crawler?

Yes

No

Wait x 
seconds, 
then serve 
the page

…



Cloaking (used by spammers)

Is this a web crawler?

Yes

No

Serve 
misleading 
content

Serve 
spam



Spider traps



Spider traps



Spider traps



Spider traps



Spider traps



Spider traps



Image source: Wikipedia

Link farms

• A large group of websites 
that provide artificially 
created links among the 
websites in the group

• Aims to boost certain link-
based importance scores 
computed by search 
engines in order to move 
pages in the link farm higher 
in the results list

• A crawler may allocate a 
significant portion of its 
resources to download the 
pages in link farms



Summary

• Scalable web crawlers are vital to search engines

• Building a scalable crawler is a non-trivial endeavor 
because the data manipulated by the crawler is too 
big to fit entirely in memory, so there are
performance issues relating to how to balance the 
use of disk, memory, and network bandwidth

• There are many high-quality open-source web 
crawlers available these days…



Crawler Description
BUbiNG Distributed Crawler (GNU GPLv3+)
GRUB Distributed Crawler (GNU GPLv2)
Heritrix Internet Archive’s crawler (Apache license)
Norconex HTTP Collector Multi-threaded crawler (Apache license)
Nutch Distributed crawler w Hadoop support (Apache license)
PHP-Crawler Script-based crawler (BSD license)
Srapy Crawling framework (BSD license)
Wget Computer program to retrieve pages (GNU GPLv3+)

A list of open source web crawlers



Specialized Crawlers

• Besides general purpose web-crawlers used in search engines 
there are web crawlers designed for specific tasks…

• Hidden web crawlers: discover content that is not accessible 
via explicitly available link structure (dynamically generated 
pages, private sites, unlinked pages, scripted content)

• Focused crawlers: discover content relevant to specific topics 
of interest or aspects such as genre, opinion, geolocation, etc.

• There are also crawlers specialized toward content structure, 
such as forums.



16.1: Introduction to Indexing
- Boolean Retrieval model
- Inverted Indexes

21.1: Index Compression
- unary, gamma, variable-byte coding
- (Partitioned) Elias-Fano coding (used by Google, facebook)

23.1: Index Construction
- preprocessing documents prior to search
- building the index efficiently

28.1: Web Crawling
- getting documents off the web at scale
- architecture of a large scale web search engine

30.1: Query Processing
- scoring and ranking search results
- Vector-Space model

Next lecture…


