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SCIENTIFIC LITERATURE



Motivation

• We perform exploratory search user studies 
on scientific literature


• Full-text retrieval has higher recall (and lower 
precision) over searching bibliographic 
records (title, abstract, etc.)


• Could using abstracts for retrieval impact 
experimental results? 



Abstracts vs. full-text

• Bioinformatics: article sections (e.g. 
results) besides abstract provides better 
representations of certain biological 
concepts


• Medicine: clinical decisions based solely 
on abstracts results in worse patient 
outcomes


• General: well-known differences between 
established/emerging fields, theoretical/
applied fields, individual fields tend to 
have own style/expectations 



Research questions

• RQ1: How well do abstracts represent the full-text of a paper in different 
CS subfields? 


• RQ2: If there are differences between subfields, could this impact 
(perceived) retrieval performance?



Data preprocessing

• 35,137 CS papers from arXiv (2007-mid 2015)


• 23% papers associated with > 1 category (40 possible 
author-assigned categories)


• Extracted 6.7 sections per article (SD = 2.7)


• Classify sections as abstract, introduction, background, 
related work, methods, results, discussion, conclusions and 
back matter


• Classified 53% of sections based on headings that 
occurred at least twice (35% of headings were unique)


• Classified 3.3 sections per article (SD = 1.2)



Representation

• Full-text and sections represented using 
probabilistic topic models 


• Topic model inferred from full-text + used to 
predict individual sections (100 topics)


• Multi-sections merged using element-wise 
summarisation and normalised


• Representativeness metric


• KL divergence: two discrete probability 
distributions, P and Q, "how much information 
is lost when Q is used to approximate P"

Abstract

Full-text



Abstract representativeness is subfield-specific

• The degree to which abstracts represent 
the full-text is subfield-specific


• Higher mean KL divergence (less 
representative abstract) appear to be more 
theoretical... 


• Lower mean KL divergence (more 
representative abstract) appear to be more 
applied...


• Theoretical abstracts tend to be shorter, 
but KL divergence is not correlated with 
abstract length (R2 = 0.003, p < 2.2 x 10-16)
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Abstract representativeness is correlated with 
retrieval performance

• What is the impact on retrieval?


• Generate queries that disproportionately 
favour specific subfields (most informative 
features from multi-class SVM, removed 
duplicates, manually removed junk)


• 1,257 queries (33.1 per category, SD = 14.5)


• Retrieve top-100 results using full-text and 
abstracts - calculate precision@100


• Precision@100 negatively correlated with KL 
divergence (R2 = 0.38, p = 3.65 x 10-5)
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Section-wise representativeness captures  
domain structure

• Are these trends random, or related to some 
underlying structure?


• Calculate KL divergence between all 8 
sections and full-text


• Do hierarchical clustering (complete-linkage 
clustering with Euclidean distance)


• Theoretical and applied subtrees, deeper 
subtrees make sense


• Obvious errors explained by high variance (e.g. 
Operating Systems) or corpus bias (e.g. 
Networking and Internet, 23% associated with 
Information theory as well)
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Current work

• Unexpectedly interesting results... 


• In progress:


• Downloaded and preprocessed all of arXiv (~1.5M → ~1M) 

• CS, Physics, CS + Physics (monophyletic?)


• Better use of topic models


• Improved tree building (phylogenetics)



POLITICAL BIAS



Motivation

• Facebook et al. recommend news articles, but obscure the publisher...


• Clicking on articles is telling Facebook "more news about Brexit please!"


• Can we automatically identify political bias in news articles?



Left & right wing framing of  
Article 50 high court verdict



James Slack CBE 
(currently Prime Minister's 

official spokesperson)

Left & right wing framing of  
Article 50 high court verdict



Left & right wing framing of  
Article 50 high court verdict



Left & right wing framing of  
Article 50 high court verdict



Left & right wing framing of  
Article 50 high court verdict



Left & right wing framing of  
Article 50 high court verdict



Left & right wing framing of  
Article 50 high court verdict



Left & right wing framing of  
Article 50 high court verdict



Left & right wing framing of  
Article 50 high court verdict



Left & right wing framing of  
Article 50 high court verdict



Left & right wing framing of  
Article 50 high court verdict



Approach

• Data sets: 


• Left-wing British newspaper articles (Guardian)


• Right-wing British newspaper articles (Daily Mail)


• Build two language models


• Calculate the likelihood ratio on a per word basis:


• 1.0 = neutral


• < 1.0 = left-wing


• > 1.0 = right-wing



Preliminary results (with broken data)

• Left-wing articles 
about UK politics


• Right-wing articles 
about UK or politics


• Model issues (see 
house of commons)
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